Fabrication of a Fully Printed Ammonia Gas Sensor Based on ZnO/rGO Using Ultraviolet-Ozone Treatment.
Sensors (Basel)
; 24(5)2024 Mar 06.
Article
em En
| MEDLINE
| ID: mdl-38475227
ABSTRACT
In this study, a room-temperature ammonia gas sensor using a ZnO and reduced graphene oxide (rGO) composite is developed. The sensor fabrication involved the innovative application of reverse offset and electrostatic spray deposition (ESD) techniques to create a ZnO/rGO sensing platform. The structural and chemical characteristics of the resulting material were comprehensively analyzed using XRD, FT-IR, FESEM, EDS, and XPS, and rGO reduction was achieved via UV-ozone treatment. Electrical properties were assessed through I-V curves, demonstrating enhanced conductivity due to UV-ozone treatment and improved charge mobility from the formation of a ZnO-rGO heterojunction. Exposure to ammonia gas resulted in increased sensor responsiveness, with longer UV-ozone treatment durations yielding superior sensitivity. Furthermore, response and recovery times were measured, with the 10 min UV-ozone-treated sensor displaying optimal responsiveness. Performance evaluation revealed linear responsiveness to ammonia concentration with a high R2 value. The sensor also exhibited exceptional selectivity for ammonia compared to acetone and CO gases, making it a promising candidate for ammonia gas detection. This study shows the outstanding performance and potential applications of the ZnO/rGO-based ammonia gas sensor, promising significant contributions to the field of gas detection.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article