Your browser doesn't support javascript.
loading
Impact on backpropagation of the spatial heterogeneity of sodium channel kinetics in the axon initial segment.
Barlow, Benjamin S M; Longtin, André; Joós, Béla.
Afiliação
  • Barlow BSM; Department of Physics, University of Ottawa, STEM Complex, 150 Louis-Pasteur Pvt, Ottawa, Ontario, Canada.
  • Longtin A; Department of Physics, University of Ottawa, STEM Complex, 150 Louis-Pasteur Pvt, Ottawa, Ontario, Canada.
  • Joós B; Center for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada.
PLoS Comput Biol ; 20(3): e1011846, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38489374
ABSTRACT
In a variety of neurons, action potentials (APs) initiate at the proximal axon, within a region called the axon initial segment (AIS), which has a high density of voltage-gated sodium channels (NaVs) on its membrane. In pyramidal neurons, the proximal AIS has been reported to exhibit a higher proportion of NaVs with gating properties that are "right-shifted" to more depolarized voltages, compared to the distal AIS. Further, recent experiments have revealed that as neurons develop, the spatial distribution of NaV subtypes along the AIS can change substantially, suggesting that neurons tune their excitability by modifying said distribution. When neurons are stimulated axonally, computational modelling has shown that this spatial separation of gating properties in the AIS enhances the backpropagation of APs into the dendrites. In contrast, in the more natural scenario of somatic stimulation, our simulations show that the same distribution can impede backpropagation, suggesting that the choice of orthodromic versus antidromic stimulation can bias or even invert experimental findings regarding the role of NaV subtypes in the AIS. We implemented a range of hypothetical NaV distributions in the AIS of three multicompartmental pyramidal cell models and investigated the precise kinetic mechanisms underlying such effects, as the spatial distribution of NaV subtypes is varied. With axonal stimulation, proximal NaV availability dominates, such that concentrating right-shifted NaVs in the proximal AIS promotes backpropagation. However, with somatic stimulation, the models are insensitive to availability kinetics. Instead, the higher activation threshold of right-shifted NaVs in the AIS impedes backpropagation. Therefore, recently observed developmental changes to the spatial separation and relative proportions of NaV1.2 and NaV1.6 in the AIS differentially impact activation and availability. The observed effects on backpropagation, and potentially learning via its putative role in synaptic plasticity (e.g. through spike-timing-dependent plasticity), are opposite for orthodromic versus antidromic stimulation, which should inform hypotheses about the impact of the developmentally regulated subcellular localization of these NaV subtypes.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Canais de Sódio Disparados por Voltagem / Segmento Inicial do Axônio Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Canais de Sódio Disparados por Voltagem / Segmento Inicial do Axônio Idioma: En Ano de publicação: 2024 Tipo de documento: Article