Your browser doesn't support javascript.
loading
Cryo-EM structures of type IV pili complexed with nanobodies reveal immune escape mechanisms.
Fernandez-Martinez, David; Kong, Youxin; Goussard, Sylvie; Zavala, Agustin; Gastineau, Pauline; Rey, Martial; Ayme, Gabriel; Chamot-Rooke, Julia; Lafaye, Pierre; Vos, Matthijn; Mechaly, Ariel; Duménil, Guillaume.
Afiliação
  • Fernandez-Martinez D; Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France.
  • Kong Y; Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France.
  • Goussard S; Sanofi R&D, Integrated Drug Discovery, CRVA, 94403, Vitry-sur-Seine, France.
  • Zavala A; Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France.
  • Gastineau P; Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France.
  • Rey M; Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France.
  • Ayme G; Institut Pasteur, Université Paris-Cité, CNRS, UAR 2024, Mass Spectrometry for Biology, 75015, Paris, France.
  • Chamot-Rooke J; Institut Pasteur, Université Paris-Cité, CNRS-UMR 3528, Antibody Engineering Platform, 75015, Paris, France.
  • Lafaye P; Institut Pasteur, Université Paris-Cité, CNRS, UAR 2024, Mass Spectrometry for Biology, 75015, Paris, France.
  • Vos M; Institut Pasteur, Université Paris-Cité, CNRS-UMR 3528, Antibody Engineering Platform, 75015, Paris, France.
  • Mechaly A; NanoImaging Core Facility, Center for Technological Resources and Research, Institut Pasteur, 75015, Paris, France.
  • Duménil G; Institut Pasteur, Crystallography Platform-C2RT, CNRS-UMR 3528, Université Paris Cité, Paris, France.
Nat Commun ; 15(1): 2414, 2024 Mar 18.
Article em En | MEDLINE | ID: mdl-38499587
ABSTRACT
Type IV pili (T4P) are prevalent, polymeric surface structures in pathogenic bacteria, making them ideal targets for effective vaccines. However, bacteria have evolved efficient strategies to evade type IV pili-directed antibody responses. Neisseria meningitidis are prototypical type IV pili-expressing Gram-negative bacteria responsible for life threatening sepsis and meningitis. This species has evolved several genetic strategies to modify the surface of its type IV pili, changing pilin subunit amino acid sequence, nature of glycosylation and phosphoforms, but how these modifications affect antibody binding at the structural level is still unknown. Here, to explore this question, we determine cryo-electron microscopy (cryo-EM) structures of pili of different sequence types with sufficiently high resolution to visualize posttranslational modifications. We then generate nanobodies directed against type IV pili which alter pilus function in vitro and in vivo. Cyro-EM in combination with molecular dynamics simulation of the nanobody-pilus complexes reveals how the different types of pili surface modifications alter nanobody binding. Our findings shed light on the impressive complementarity between the different strategies used by bacteria to avoid antibody binding. Importantly, we also show that structural information can be used to make informed modifications in nanobodies as countermeasures to these immune evasion mechanisms.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Anticorpos de Domínio Único Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Anticorpos de Domínio Único Idioma: En Ano de publicação: 2024 Tipo de documento: Article