Your browser doesn't support javascript.
loading
Deep learning methods improve genomic prediction of wheat breeding.
Montesinos-López, Abelardo; Crespo-Herrera, Leonardo; Dreisigacker, Susanna; Gerard, Guillermo; Vitale, Paolo; Saint Pierre, Carolina; Govindan, Velu; Tarekegn, Zerihun Tadesse; Flores, Moisés Chavira; Pérez-Rodríguez, Paulino; Ramos-Pulido, Sofía; Lillemo, Morten; Li, Huihui; Montesinos-López, Osval A; Crossa, Jose.
Afiliação
  • Montesinos-López A; Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
  • Crespo-Herrera L; International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado. de México, Mexico.
  • Dreisigacker S; International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado. de México, Mexico.
  • Gerard G; International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado. de México, Mexico.
  • Vitale P; International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado. de México, Mexico.
  • Saint Pierre C; International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado. de México, Mexico.
  • Govindan V; International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado. de México, Mexico.
  • Tarekegn ZT; International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado. de México, Mexico.
  • Flores MC; Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, Mexico.
  • Pérez-Rodríguez P; Estudios del Desarrollo Rural, Economía, Estadística y Cómputo Aplicado, Colegio de Postgraduados, Texcoco, Estado de México, Mexico.
  • Ramos-Pulido S; Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
  • Lillemo M; Department of Plant Science, Norwegian University of Life Science (NMBU), Ås, Norway.
  • Li H; 6State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences and CIMMYT China Office, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
  • Montesinos-López OA; Facultad de Telemática, Universidad de Colima, Colima, Colima, Mexico.
  • Crossa J; International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado. de México, Mexico.
Front Plant Sci ; 15: 1324090, 2024.
Article em En | MEDLINE | ID: mdl-38504889
ABSTRACT
In the field of plant breeding, various machine learning models have been developed and studied to evaluate the genomic prediction (GP) accuracy of unseen phenotypes. Deep learning has shown promise. However, most studies on deep learning in plant breeding have been limited to small datasets, and only a few have explored its application in moderate-sized datasets. In this study, we aimed to address this limitation by utilizing a moderately large dataset. We examined the performance of a deep learning (DL) model and compared it with the widely used and powerful best linear unbiased prediction (GBLUP) model. The goal was to assess the GP accuracy in the context of a five-fold cross-validation strategy and when predicting complete environments using the DL model. The results revealed the DL model outperformed the GBLUP model in terms of GP accuracy for two out of the five included traits in the five-fold cross-validation strategy, with similar results in the other traits. This indicates the superiority of the DL model in predicting these specific traits. Furthermore, when predicting complete environments using the leave-one-environment-out (LOEO) approach, the DL model demonstrated competitive performance. It is worth noting that the DL model employed in this study extends a previously proposed multi-modal DL model, which had been primarily applied to image data but with small datasets. By utilizing a moderately large dataset, we were able to evaluate the performance and potential of the DL model in a context with more information and challenging scenario in plant breeding.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article