Your browser doesn't support javascript.
loading
MicroBundleCompute: Automated segmentation, tracking, and analysis of subdomain deformation in cardiac microbundles.
Kobeissi, Hiba; Jilberto, Javiera; Karakan, M Çagatay; Gao, Xining; DePalma, Samuel J; Das, Shoshana L; Quach, Lani; Urquia, Jonathan; Baker, Brendon M; Chen, Christopher S; Nordsletten, David; Lejeune, Emma.
Afiliação
  • Kobeissi H; Department of Mechanical Engineering, Boston University, Boston, MA, United States of America.
  • Jilberto J; Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States of America.
  • Karakan MÇ; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.
  • Gao X; Department of Mechanical Engineering, Boston University, Boston, MA, United States of America.
  • DePalma SJ; Photonics Center, Boston University, Boston, MA, United States of America.
  • Das SL; Department of Biomedical Engineering, Boston University, Boston, MA, United States of America.
  • Quach L; Department of Biomedical Engineering, Boston University, Boston, MA, United States of America.
  • Urquia J; Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America.
  • Baker BM; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America.
  • Chen CS; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.
  • Nordsletten D; Department of Biomedical Engineering, Boston University, Boston, MA, United States of America.
  • Lejeune E; Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America.
PLoS One ; 19(3): e0298863, 2024.
Article em En | MEDLINE | ID: mdl-38530829
ABSTRACT
Advancing human induced pluripotent stem cell derived cardiomyocyte (hiPSC-CM) technology will lead to significant progress ranging from disease modeling, to drug discovery, to regenerative tissue engineering. Yet, alongside these potential opportunities comes a critical challenge attaining mature hiPSC-CM tissues. At present, there are multiple techniques to promote maturity of hiPSC-CMs including physical platforms and cell culture protocols. However, when it comes to making quantitative comparisons of functional behavior, there are limited options for reliably and reproducibly computing functional metrics that are suitable for direct cross-system comparison. In addition, the current standard functional metrics obtained from time-lapse images of cardiac microbundle contraction reported in the field (i.e., post forces, average tissue stress) do not take full advantage of the available information present in these data (i.e., full-field tissue displacements and strains). Thus, we present "MicroBundleCompute," a computational framework for automatic quantification of morphology-based mechanical metrics from movies of cardiac microbundles. Briefly, this computational framework offers tools for automatic tissue segmentation, tracking, and analysis of brightfield and phase contrast movies of beating cardiac microbundles. It is straightforward to implement, runs without user intervention, requires minimal input parameter setting selection, and is computationally inexpensive. In this paper, we describe the methods underlying this computational framework, show the results of our extensive validation studies, and demonstrate the utility of exploring heterogeneous tissue deformations and strains as functional metrics. With this manuscript, we disseminate "MicroBundleCompute" as an open-source computational tool with the aim of making automated quantitative analysis of beating cardiac microbundles more accessible to the community.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células-Tronco Pluripotentes Induzidas Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células-Tronco Pluripotentes Induzidas Idioma: En Ano de publicação: 2024 Tipo de documento: Article