Your browser doesn't support javascript.
loading
Subnano-Fe (Co, Ni) clusters anchored on halloysite nanotubes: an efficient Fenton-like catalyst for the degradation of tetracycline.
Sun, Qing; Yu, Jiale; Zhao, Youpu; Liu, Hanhu; Li, Chunsheng; Tao, Jiajun; Zhang, Jian; Sheng, Jiawei.
Afiliação
  • Sun Q; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
  • Yu J; School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
  • Zhao Y; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
  • Liu H; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
  • Li C; School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
  • Tao J; Zhejiang Institute of Geosciences, Hangzhou, 310007, China.
  • Zhang J; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
  • Sheng J; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
Environ Sci Pollut Res Int ; 31(19): 28210-28224, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38532214
ABSTRACT
Iron-based catalysts are environmentally friendly, and iron minerals are abundant in the earth's crust, with great potential advantages for PMS-based advanced oxidation process applications. However, homogeneous Fe2+/PMS systems suffer from side reactions and are challenging to reuse. Therefore, developing catalysts with improved stability and activity is a long-term goal for practical Fe-based catalyst applications. In this study, we prepared Fe-HNTs nanoreactors by encapsulating a nitrogen-doped carbon layer with one-dimensional halloysite nanotubes (HNTs) using the molten salt-assisted method. Subsequently, Fe (Co, Ni) nanoclusters were anchored onto the nitrogen-doped carbon layer at a relatively low temperature (550℃), resulting in stable and uniform distribution of metal nanoclusters on the surface of HNTs carriers in the form of Fe-Nx coordination. The results showed that the dissolution of the molten salt and leaching of post-treated metal oxides generated numerous mesopores within the Fe-HNTs nanoreactor, leading to a specific surface area more than 10 times that of HNTs. This enhanced mass transfer capability facilitates rapid pollutant removal while exposing more active sites. Remarkably, Fe-HNTs adsorbed up to 97% of tetracycline within 60 min. In the Fe-HNTs/PMS system, the predominant reactive oxygen species has been shown to be 1O2, and the added tetracycline was degraded by more than 98% within 5 min. The removal of tetracycline was maintained above 96% in the presence of interfering factors such as wide pH (3-11) and inorganic anions (5 mM Cl-, HCO3-, NO3-, and SO42-). The investigated mechanism suggests that efficient degradation and interference resistance of the Fe-HNTs/PMS system is attributed to the synergistic effect between the rapid adsorption of porous structure and the non-radical (1O2)-dominated degradation pathway.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tetraciclina / Nanotubos / Ferro Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tetraciclina / Nanotubos / Ferro Idioma: En Ano de publicação: 2024 Tipo de documento: Article