Your browser doesn't support javascript.
loading
Electronic Excited States from Physically Constrained Machine Learning.
Cignoni, Edoardo; Suman, Divya; Nigam, Jigyasa; Cupellini, Lorenzo; Mennucci, Benedetta; Ceriotti, Michele.
Afiliação
  • Cignoni E; Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56126 Pisa, Italy.
  • Suman D; Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
  • Nigam J; Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
  • Cupellini L; Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56126 Pisa, Italy.
  • Mennucci B; Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56126 Pisa, Italy.
  • Ceriotti M; Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
ACS Cent Sci ; 10(3): 637-648, 2024 Mar 27.
Article em En | MEDLINE | ID: mdl-38559300
ABSTRACT
Data-driven techniques are increasingly used to replace electronic-structure calculations of matter. In this context, a relevant question is whether machine learning (ML) should be applied directly to predict the desired properties or combined explicitly with physically grounded operations. We present an example of an integrated modeling approach in which a symmetry-adapted ML model of an effective Hamiltonian is trained to reproduce electronic excitations from a quantum-mechanical calculation. The resulting model can make predictions for molecules that are much larger and more complex than those on which it is trained and allows for dramatic computational savings by indirectly targeting the outputs of well-converged calculations while using a parametrization corresponding to a minimal atom-centered basis. These results emphasize the merits of intertwining data-driven techniques with physical approximations, improving the transferability and interpretability of ML models without affecting their accuracy and computational efficiency and providing a blueprint for developing ML-augmented electronic-structure methods.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article