Your browser doesn't support javascript.
loading
A Developmental Mechanism to Regulate Alternative Polyadenylation in an Adult Stem Cell Lineage.
Gallicchio, Lorenzo; Matias, Neuza R; Morales-Polanco, Fabian; Nava, Iliana; Stern, Sarah; Zeng, Yi; Fuller, Margaret T.
Afiliação
  • Gallicchio L; Department of Developmental Biology, Stanford University School of Medicine, Stanford USA.
  • Matias NR; Department of Developmental Biology, Stanford University School of Medicine, Stanford USA.
  • Morales-Polanco F; Department of Biology, Stanford University School of Humanities and Sciences, Stanford USA.
  • Nava I; Department of Genetics, Stanford University School of Medicine, USA.
  • Stern S; Department of Developmental Biology, Stanford University School of Medicine, Stanford USA.
  • Zeng Y; Department of Developmental Biology, Stanford University School of Medicine, Stanford USA.
  • Fuller MT; Department of Genetics, Stanford University School of Medicine, USA.
bioRxiv ; 2024 Jul 10.
Article em En | MEDLINE | ID: mdl-38562704
ABSTRACT
Alternative Cleavage and Polyadenylation (APA) often results in production of mRNA isoforms with either longer or shorter 3'UTRs from the same genetic locus, potentially impacting mRNA translation, localization and stability. Developmentally regulated APA can thus make major contributions to cell-type-specific gene expression programs as cells differentiate. During Drosophila spermatogenesis, approximately 500 genes undergo APA when proliferating spermatogonia differentiate into spermatocytes, producing transcripts with shortened 3' UTRs, leading to profound stage-specific changes in the proteins expressed. The molecular mechanisms that specify usage of upstream polyadenylation sites in spermatocytes are thus key to understanding the changes in cell state. Here, we show that upregulation of PCF11 and Cbc, the two components of Cleavage Factor II (CFII), orchestrates APA during Drosophila spermatogenesis. Knock down of PCF11 or cbc in spermatocytes caused dysregulation of APA, with many transcripts normally cleaved at a proximal site in spermatocytes now cleaved at their distal site, as in spermatogonia. Forced overexpression of CFII components in spermatogonia switched cleavage of some transcripts to the proximal site normally used in spermatocytes. Our findings reveal a developmental mechanism where changes in expression of specific cleavage factors can direct cell-type-specific APA at selected genes.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article