Your browser doesn't support javascript.
loading
Evolution of olfactory receptor superfamily in bats based on high throughput molecular modelling.
Zhang, Tianmin; Jing, Haohao; Wang, Jinhong; Zhao, Le; Liu, Yang; Rossiter, Stephen J; Lu, Huimeng; Li, Gang.
Afiliação
  • Zhang T; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
  • Jing H; School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
  • Wang J; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
  • Zhao L; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
  • Liu Y; School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China.
  • Rossiter SJ; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
  • Lu H; School of Biological and Behavioural Sciences, Queen Mary, University of London, London, UK.
  • Li G; School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
Mol Ecol Resour ; 24(5): e13958, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38567648
ABSTRACT
The origin of flight and laryngeal echolocation in bats is likely to have been accompanied by evolutionary changes in other aspects of their sensory biology. Of all sensory modalities in bats, olfaction is perhaps the least well understood. Olfactory receptors (ORs) function in recognizing odour molecules, with crucial roles in evaluating food, as well as in processing social information. Here we compare OR repertoire sizes across taxa and apply a new pipeline that integrates comparative genome data with protein structure modelling and then we employ molecular docking techniques with small molecules to analyse OR functionality based on binding energies. Our results suggest a sharp contraction in odorant recognition of the functional OR repertoire during the origin of bats, consistent with a reduced dependence on olfaction. We also compared bat lineages with contrasting different ecological characteristics and found evidence of differences in OR gene expansion and contraction, and in the composition of ORs with different tuning breadths. The strongest binding energies of ORs in non-echolocating fruit-eating bats were seen to correspond to ester odorants, although we did not detect a quantitative advantage of functional OR repertoires in these bats compared with echolocating insectivorous species. Overall, our findings based on molecular modelling and computational docking suggest that bats have undergone olfactory evolution linked to dietary adaptation. Our results from extant and ancestral bats help to lay the groundwork for targeted experimental functional tests in the future.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quirópteros / Receptores Odorantes Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quirópteros / Receptores Odorantes Idioma: En Ano de publicação: 2024 Tipo de documento: Article