Your browser doesn't support javascript.
loading
Large-Area Flexible Carbon Nanofilms with Synergistically Enhanced Transmittance and Conductivity Prepared by Reorganizing Single-Walled Carbon Nanotube Networks.
Yue, Ying; Zhang, Di; Wang, Pengyu; Xia, Xiaogang; Wu, Xin; Zhang, Yuejuan; Mei, Jie; Li, Shaoqing; Li, Mingming; Wang, Yanchun; Zhang, Xiao; Wei, Xiaojun; Liu, Huaping; Zhou, Weiya.
Afiliação
  • Yue Y; Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
  • Zhang D; School of Physical Sciences and College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Wang P; Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
  • Xia X; School of Physical Sciences and College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Wu X; Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
  • Zhang Y; School of Physical Sciences and College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Mei J; Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
  • Li S; School of Physical Sciences and College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Li M; Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
  • Wang Y; School of Physical Sciences and College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Zhang X; Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
  • Wei X; School of Physical Sciences and College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Liu H; Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
  • Zhou W; School of Physical Sciences and College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
Adv Mater ; 36(26): e2313971, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38573651
ABSTRACT
Large-area flexible transparent conductive films (TCFs) are highly desired for future electronic devices. Nanocarbon TCFs are one of the most promising candidates, but some of their properties are mutually restricted. Here, a novel carbon nanotube network reorganization (CNNR) strategy, that is, the facet-driven CNNR (FD-CNNR) technique, is presented to overcome this intractable contradiction. The FD-CNNR technique introduces an interaction between single-walled carbon nanotube (SWNT) and Cu─-O. Based on the unique FD-CNNR mechanism, large-area flexible reorganized carbon nanofilms (RNC-TCFs) are designed and fabricated with A3-size and even meter-length, including reorganized SWNT (RSWNT) films and graphene and RSWNT (G-RSWNT) hybrid films. Synergistic improvement in strength, transmittance, and conductivity of flexible RNC-TCFs is achieved. The G-RSWNT TCF shows sheet resistance as low as 69 Ω sq-1 at 86% transmittance, FOM value of 35, and Young's modulus of ≈45 MPa. The high strength enables RNC-TCFs to be freestanding on water and easily transferred to any target substrate without contamination. A4-size flexible smart window is fabricated, which manifests controllable dimming and fog removal. The FD-CNNR technique can be extended to large-area or even large-scale fabrication of TCFs and can provide new insights into the design of TCFs and other functional films.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article