Your browser doesn't support javascript.
loading
Defining a TFAP2C-centered transcription factor network during murine peri-implantation.
Gao, Rui; Yang, Guang; Wang, Mengting; Xiao, Jing; Yi, Shanru; Huang, Yanxin; Guo, Zhenxiang; Kang, Yunzhe; Fu, Qianzheng; Wang, Mingzhu; Xu, Ben; Shen, Shijun; Zhu, Qianshu; Liu, Meng; Wang, Liping; Cui, Xinyu; Yi, Shanshan; Kou, Xiaochen; Zhao, Yanhong; Gu, Liang; Wang, Hong; Gao, Shaorong; Jiang, Cizhong; Chen, Jiayu.
Afiliação
  • Gao R; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University,
  • Yang G; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Shanghai Tenth People'
  • Wang M; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University,
  • Xiao J; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regenera
  • Yi S; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University,
  • Huang Y; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University,
  • Guo Z; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University,
  • Kang Y; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University,
  • Fu Q; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University,
  • Wang M; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University,
  • Xu B; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University,
  • Shen S; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
  • Zhu Q; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
  • Liu M; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
  • Wang L; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
  • Cui X; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
  • Yi S; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
  • Kou X; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University,
  • Zhao Y; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University,
  • Gu L; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
  • Wang H; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University,
  • Gao S; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University,
  • Jiang C; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China. Electronic address: cz
  • Chen J; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University,
Dev Cell ; 59(9): 1146-1158.e6, 2024 May 06.
Article em En | MEDLINE | ID: mdl-38574734
ABSTRACT
Transcription factors (TFs) play important roles in early embryonic development, but factors regulating TF action, relationships in signaling cascade, genome-wide localizations, and impacts on cell fate transitions during this process have not been clearly elucidated. In this study, we used uliCUT&RUN-seq to delineate a TFAP2C-centered regulatory network, showing that it involves promoter-enhancer interactions and regulates TEAD4 and KLF5 function to mediate cell polarization. Notably, we found that maternal retinoic acid metabolism regulates TFAP2C expression and function by inducing the active demethylation of SINEs, indicating that the RARG-TFAP2C-TEAD4/KLF5 axis connects the maternal-to-zygotic transition to polarization. Moreover, we found that both genomic imprinting and SNP-transferred genetic information can influence TF positioning to regulate parental gene expressions in a sophisticated manner. In summary, we propose a ternary model of TF regulation in murine embryonic development with TFAP2C as the core element and metabolic, epigenetic, and genetic information as nodes connecting the pathways.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Implantação do Embrião / Fatores de Transcrição / Regulação da Expressão Gênica no Desenvolvimento / Fator de Transcrição AP-2 Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Implantação do Embrião / Fatores de Transcrição / Regulação da Expressão Gênica no Desenvolvimento / Fator de Transcrição AP-2 Idioma: En Ano de publicação: 2024 Tipo de documento: Article