Your browser doesn't support javascript.
loading
Effect of Poly(ethylene glycol) Configuration on Microbubble Pharmacokinetics.
Navarro-Becerra, J Angel; Castillo, Jair I; Borden, Mark A.
Afiliação
  • Navarro-Becerra JA; Mechanical Engineering Department, University of Colorado Boulder, Boulder, Colorado 80309, United States.
  • Castillo JI; Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States.
  • Borden MA; Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States.
ACS Biomater Sci Eng ; 10(5): 3331-3342, 2024 05 13.
Article em En | MEDLINE | ID: mdl-38600786
ABSTRACT
Microbubbles (MBs) hold substantial promise for medical imaging and therapy; nonetheless, knowledge gaps persist between composition, structure, and in vivo performance, especially with respect to pharmacokinetics. Of particular interest is the role of the poly(ethylene glycol) (PEG) layer, which is thought to shield the MB against opsonization and rapid clearance but is also known to cause an antibody response upon multiple injections. The goal of this study was, therefore, to elucidate the role of the PEG layer in circulation persistence of MBs in the naïve animal (prior to an adaptive immune response). Here, we directly observe the number and size of individual MBs obtained from blood samples, unifying size and concentration into the microbubble volume dose (MVD) parameter. This approach enables direct evaluation of the pharmacokinetics of intact MBs, comprising both the lipid shell and gaseous core, rather than separately assessing the lipid or gas components. We examined the in vivo circulation persistence of 3 µm diameter phospholipid-coated MBs with three different mPEG2000 content 2 mol % (mushroom), 5 mol % (intermediate), and 10 mol % (brush). MB size and concentration in the blood were evaluated by a hemocytometer analysis over 30 min following intravenous injections of 20 and 40 µL/kg MVD in Sprague-Dawley rats. Interestingly, pharmacokinetic analysis demonstrated that increasing PEG concentration on the MB surface resulted in faster clearance. This was evidenced by a 1.6-fold reduction in half-life and area under the curve (AUC) (p < 0.05) in the central compartment. Conversely, the AUC in the peripheral compartment increased with PEG density, suggesting enhanced MB trapping by the mononuclear phagocyte system. This was supported by an in vitro assay, which showed a significant rise in complement C3a activation with a higher PEG content. In conclusion, a minimal PEG concentration on the MB shell (mushroom configuration) was found to prolong circulation and mitigate immunogenicity.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Microbolhas Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Microbolhas Idioma: En Ano de publicação: 2024 Tipo de documento: Article