Your browser doesn't support javascript.
loading
The mechanism of intrinsic peroxidase (POD)-like activity of attapulgite.
Feng, Feng; Zhang, Yihe; Zhang, Xiao; Mu, Bin; An, Qi; Wang, Peixia.
Afiliação
  • Feng F; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
  • Zhang Y; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
  • Zhang X; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
  • Mu B; Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China.
  • An Q; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
  • Wang P; National Anti-Drug Laboratory Beijing Regional Center, Beijing, 100164, China. sdwhwangpeixia@163.com.
Anal Bioanal Chem ; 2024 Apr 11.
Article em En | MEDLINE | ID: mdl-38602542
ABSTRACT
Natural attapulgite (ATP) is a promising substitute for existing artificial nanozymes due to its intrinsic enzymatic activity. However, the active center of ATP's inherent enzymatic activity has not yet been revealed, which limits its further design and activity optimization. Studying the active center of mineral materials can be extremely challenging due to their complexity. Here, we demonstrated that Fe is the primary element in ATP responsible for peroxidase (POD)-like activity through theoretical speculation and experimental verification. More importantly, we found that the ratio of Fe2+/Fe3+ is responsible for the district POD-like activity of ATP from different regions with the same Fe content. Additionally, three facile strategies, including grinding, heat treatment, and acid treatment, were demonstrated to increase the relative Fe content and thus optimize the POD-like activity of ATP. Finally, ATP was used to detect the concentration of H2O2, enabling the detection of low concentrations (0.11-1.76 mM) of H2O2. This study serves as a novel reference for the future design and performance optimization of nanozymes that are based on ATP and clay minerals.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article