Your browser doesn't support javascript.
loading
PheSeq, a Bayesian deep learning model to enhance and interpret the gene-disease association studies.
Yao, Xinzhi; Ouyang, Sizhuo; Lian, Yulong; Peng, Qianqian; Zhou, Xionghui; Huang, Feier; Hu, Xuehai; Shi, Feng; Xia, Jingbo.
Afiliação
  • Yao X; College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China.
  • Ouyang S; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China.
  • Lian Y; College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China.
  • Peng Q; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China.
  • Zhou X; College of Science, Huazhong Agricultural University, Wuhan, China.
  • Huang F; College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China.
  • Hu X; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China.
  • Shi F; College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China.
  • Xia J; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China.
Genome Med ; 16(1): 56, 2024 04 16.
Article em En | MEDLINE | ID: mdl-38627848
ABSTRACT
Despite the abundance of genotype-phenotype association studies, the resulting association outcomes often lack robustness and interpretations. To address these challenges, we introduce PheSeq, a Bayesian deep learning model that enhances and interprets association studies through the integration and perception of phenotype descriptions. By implementing the PheSeq model in three case studies on Alzheimer's disease, breast cancer, and lung cancer, we identify 1024 priority genes for Alzheimer's disease and 818 and 566 genes for breast cancer and lung cancer, respectively. Benefiting from data fusion, these findings represent moderate positive rates, high recall rates, and interpretation in gene-disease association studies.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Doença de Alzheimer / Aprendizado Profundo / Neoplasias Pulmonares Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Doença de Alzheimer / Aprendizado Profundo / Neoplasias Pulmonares Idioma: En Ano de publicação: 2024 Tipo de documento: Article