Your browser doesn't support javascript.
loading
The prostaglandin D2 antagonist asapiprant ameliorates clinical severity in young hosts infected with invasive Streptococcus pneumoniae.
Bhalla, Manmeet; Herring, Sydney; Lenhard, Alexsandra; Wheeler, Joshua R; Aswad, Fred; Klumpp, Klaus; Rebo, Justin; Wang, Yan; Wilhelmsen, Kevin; Fortney, Kristen; Bou Ghanem, Elsa N.
Afiliação
  • Bhalla M; Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA.
  • Herring S; Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA.
  • Lenhard A; Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA.
  • Wheeler JR; Department of Pathology, Stanford University, Stanford, California, USA.
  • Aswad F; BIOAGE Labs Inc., Richmond, California, USA.
  • Klumpp K; BIOAGE Labs Inc., Richmond, California, USA.
  • Rebo J; BIOAGE Labs Inc., Richmond, California, USA.
  • Wang Y; BIOAGE Labs Inc., Richmond, California, USA.
  • Wilhelmsen K; BIOAGE Labs Inc., Richmond, California, USA.
  • Fortney K; BIOAGE Labs Inc., Richmond, California, USA.
  • Bou Ghanem EN; Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA.
Infect Immun ; 92(5): e0052223, 2024 May 07.
Article em En | MEDLINE | ID: mdl-38629842
ABSTRACT
Streptococcus pneumoniae (pneumococcus) remains a serious cause of pulmonary and systemic infections globally, and host-directed therapies are lacking. The aim of this study was to test the therapeutic efficacy of asapiprant, an inhibitor of prostaglandin D2 signaling, against pneumococcal infection. Treatment of young mice with asapiprant after pulmonary infection with invasive pneumococci significantly reduced systemic spread, disease severity, and host death. Protection was specific against bacterial dissemination from the lung to the blood but had no effect on pulmonary bacterial burden. Asapiprant-treated mice had enhanced antimicrobial activity in circulating neutrophils, elevated levels of reactive oxygen species (ROS) in lung macrophages/monocytes, and improved pulmonary barrier integrity indicated by significantly reduced diffusion of fluorescein isothiocyanate (FITC)-dextran from lungs into the circulation. These findings suggest that asapiprant protects the host against pneumococcal dissemination by enhancing the antimicrobial activity of immune cells and maintaining epithelial/endothelial barrier integrity in the lungs.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Infecções Pneumocócicas Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Infecções Pneumocócicas Idioma: En Ano de publicação: 2024 Tipo de documento: Article