Your browser doesn't support javascript.
loading
Advancing Nonsmall Cell Lung Cancer Diagnosis Accuracy via Dual Detection Fluorescent Nanoprobes.
Wang, Yinian; Chang, Zixuan; Ouyang, Mingyi; Wang, Keyi; Gao, Xiaonan; Tang, Bo.
Afiliação
  • Wang Y; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Edu-cation, Shandong Provincial Key Laboratory of Clean Production of
  • Chang Z; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Edu-cation, Shandong Provincial Key Laboratory of Clean Production of
  • Ouyang M; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Edu-cation, Shandong Provincial Key Laboratory of Clean Production of
  • Wang K; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Edu-cation, Shandong Provincial Key Laboratory of Clean Production of
  • Gao X; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Edu-cation, Shandong Provincial Key Laboratory of Clean Production of
  • Tang B; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Edu-cation, Shandong Provincial Key Laboratory of Clean Production of
Anal Chem ; 96(17): 6812-6818, 2024 Apr 30.
Article em En | MEDLINE | ID: mdl-38634576
ABSTRACT
Among the primary threats to human health worldwide, nonsmall cell lung cancer (NSCLC) remains a significant factor and is a leading cause of cancer-related deaths. Due to subtle early symptoms, NSCLC patients are diagnosed at advanced stages, resulting in low survival rates. Herein, novel Au-Se bond nanoprobes (NPs) designed for the specific detection of Calpain-2 (CAPN2) and Human Neutrophil Elastase (HNE), pivotal biomarkers in NSCLC, were developed. The NPs demonstrated exceptional specificity and sensitivity toward CAPN2 and HNE, enabling dual-color fluorescence imaging to distinguish between NSCLC cells and normal lung cells effectively. The NPs' performance was consistent across a wide pH range (6.2 to 8.0), and it exhibited remarkable resistance to biological thiol interference, indicating its robustness in complex physiological environments. These findings suggest the nanoprobe is a promising tool for early NSCLC diagnosis, offering a novel approach for enhancing the accuracy of cancer detection.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carcinoma Pulmonar de Células não Pequenas / Corantes Fluorescentes / Neoplasias Pulmonares Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carcinoma Pulmonar de Células não Pequenas / Corantes Fluorescentes / Neoplasias Pulmonares Idioma: En Ano de publicação: 2024 Tipo de documento: Article