Your browser doesn't support javascript.
loading
Improving radiomic modeling for the identification of symptomatic carotid atherosclerotic plaques using deep learning-based 3D super-resolution CT angiography.
Wang, Lingjie; Guo, Tiedan; Wang, Li; Yang, Wentao; Wang, Jingying; Nie, Jianlong; Cui, Jingjing; Jiang, Pengbo; Li, Junlin; Zhang, Hua.
Afiliação
  • Wang L; Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
  • Guo T; Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
  • Wang L; Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
  • Yang W; Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
  • Wang J; Department of Endemic Disease Prevention and Control, Shanxi Province Disease Prevention and Control Center, Shanxi Province, 030001, China.
  • Nie J; Shanghai United Imaging Intelligence, Co., Ltd., Shanghai City, 200030, China.
  • Cui J; Shanghai United Imaging Intelligence, Co., Ltd., Shanghai City, 200030, China.
  • Jiang P; Shanghai United Imaging Intelligence, Co., Ltd., Shanghai City, 200030, China.
  • Li J; Department of Imaging Medicine, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010017, China.
  • Zhang H; Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
Heliyon ; 10(8): e29331, 2024 Apr 30.
Article em En | MEDLINE | ID: mdl-38644848
ABSTRACT
Rationale and

objectives:

Radiomic models based on normal-resolution (NR) computed tomography angiography (CTA) images can fail to distinguish between symptomatic and asymptomatic carotid atherosclerotic plaques. This study aimed to explore the effectiveness of a deep learning-based three-dimensional super-resolution (SR) CTA radiomic model for improved identification of symptomatic carotid atherosclerotic plaques. Materials and

methods:

A total of 193 patients with carotid atherosclerotic plaques were retrospectively enrolled and allocated into either a symptomatic (n = 123) or an asymptomatic (n = 70) groups. SR CTA images were derived from NR CTA images using deep learning-based three-dimensional SR technology. Handcrafted radiomic features were extracted from both the SR and NR CTA images and three risk models were developed based on manually measured quantitative CTA characteristics and NR and SR radiomic features. Model performances were assessed via receiver operating characteristic, calibration, and decision curve analyses.

Results:

The SR model exhibited the optimal performance (area under the curve [AUC] 0.820, accuracy 0.802, sensitivity 0.854, F1 score 0.847) in the testing cohort, outperforming the other two models. The calibration curve analyses and Hosmer-Lemeshow test demonstrated that the SR model exhibited the best goodness of fit, and decision curve analysis revealed that SR model had the highest clinical value and potential patient benefits.

Conclusions:

Deep learning-based three-dimensional SR technology could improve the CTA-based radiomic models in identifying symptomatic carotid plaques, potentially providing more accurate and valuable information to guide clinical decision-making to reduce the risk of ischemic stroke.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article