Physiological and molecular mechanisms associated with potato tuber dormancy.
J Exp Bot
; 75(19): 6093-6109, 2024 Oct 16.
Article
em En
| MEDLINE
| ID: mdl-38650389
ABSTRACT
Tuber dormancy is an important physiological trait that impacts post-harvest storage and end-use qualities of potatoes. Overall, dormancy regulation of potato tubers is a complex process driven by genetic as well as environmental factors. Elucidation of the molecular and physiological mechanisms that influence different dormancy stages of tubers has wider potato breeding and industry-relevant implications. Therefore, the primary objective of this review is to present current knowledge of the diversity in tuber dormancy traits among wild relatives of potatoes and discuss how genetic and epigenetic factors contribute to tuber dormancy. Advancements in understanding of key physiological mechanisms involved in tuber dormancy regulation, such as apical dominance, phytohormone metabolism, and oxidative stress responses, are also discussed. This review highlights the impacts of common sprout suppressors on the molecular and physiological mechanisms associated with tuber dormancy and other storage qualities. Collectively, the literature suggests that significant changes in expression of genes associated with the cell cycle, phytohormone metabolism, and oxidative stress response influence initiation, maintenance, and termination of dormancy in potato tubers. Commercial sprout suppressors mainly alter the expression of genes associated with the cell cycle and stress responses and suppress sprout growth rather than prolonging tuber dormancy.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Reguladores de Crescimento de Plantas
/
Solanum tuberosum
/
Tubérculos
/
Dormência de Plantas
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article