Your browser doesn't support javascript.
loading
Potential and performance of anisotropic 19F NMR for the enantiomeric analysis of fluorinated chiral active pharmaceutical ingredients.
Gouilleux, Boris; Moussallieh, François-Marie; Lesot, Philippe.
Afiliação
  • Gouilleux B; Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. HM1, 17-19, Avenue des Sciences, 91400, Orsay, France.
  • Moussallieh FM; Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. HM1, 17-19, Avenue des Sciences, 91400, Orsay, France.
  • Lesot P; Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. HM1, 17-19, Avenue des Sciences, 91400, Orsay, France.
Analyst ; 149(11): 3204-3213, 2024 May 28.
Article em En | MEDLINE | ID: mdl-38655746
ABSTRACT
Controlling the enantiomeric purity of chiral drugs is of paramount importance in pharmaceutical chemistry. Isotropic 1H NMR spectroscopy involving chiral agents is a widely used method for discriminating enantiomers and quantifying their relative proportions. However, the relatively weak spectral separation of enantiomers (1H Δδiso(R, S)) in frequency units at low and moderate magnetic fields, as well as the lack of versatility of a majority of those agents with respect to different chemical functions, may limit the general use of this approach. In this article, we investigate the analytical potential of 19F NMR in anisotropic chiral media for the enantiomeric analysis of fluorinated active pharmaceutical ingredients (API) via two residual anisotropic NMR interactions the chemical shift anisotropy (19F-RCSA) and dipolar coupling ((19F-19F)-RDC). Lyotropic chiral liquid crystals (CLC) based on poly-γ-benzyl-L-glutamate (PBLG) show an interesting versatility and adaptability to enantiodiscrimination as illustrated for two chiral drugs, Flurbiprofen® (FLU) and Efavirenz® (EFA), which have very different chemical functions. The approach has been tested on a routine 300 MHz NMR spectrometer equipped with a standard probe (5 mm BBFO probe) in a high-throughput context (i.e., ≈10 s of NMR experiments) while the performance for enantiomeric excess (ee) measurement is evaluated in terms of trueness and precision. The limits of detection (LOD) determined were 0.17 and 0.16 µmol ml-1 for FLU and EFA, respectively, allow working in dilute conditions even with such a short experimental duration. The enantiodiscrimination capabilities are also discussed with respect to experimental features such as CLC composition and temperature.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Espectroscopia de Ressonância Magnética / Flúor Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Espectroscopia de Ressonância Magnética / Flúor Idioma: En Ano de publicação: 2024 Tipo de documento: Article