Your browser doesn't support javascript.
loading
Ribosomal S6 kinase 2-forkhead box protein O4 signaling pathway plays an essential role in melanogenesis.
Jeung, Dohyun; Lee, Ga-Eun; Chen, Weidong; Byun, Jiin; Nam, Soo-Bin; Park, You-Min; Lee, Hye Suk; Kang, Han Chang; Lee, Joo Young; Kim, Kwang Dong; Hong, Young-Soo; Lee, Cheol-Jung; Kim, Dae Joon; Cho, Yong-Yeon.
Afiliação
  • Jeung D; BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea.
  • Lee GE; BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea.
  • Chen W; BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea.
  • Byun J; BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea.
  • Nam SB; BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea.
  • Park YM; Biopharmaceutical research center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea.
  • Lee HS; BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea.
  • Kang HC; BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea.
  • Lee JY; College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea.
  • Kim KD; BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea.
  • Hong YS; Division of Life Sciences, Gyeongsang National University, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, South Korea.
  • Lee CJ; Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanji-ro, Ochang-eup, Cheongju-si, Chongbuk, 28116, South Korea.
  • Kim DJ; Biopharmaceutical research center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea.
  • Cho YY; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, MBMRF, 1.410, 5300, North L St., McAllen, TX, 78504, USA.
Sci Rep ; 14(1): 9440, 2024 04 24.
Article em En | MEDLINE | ID: mdl-38658799
ABSTRACT
Although previous studies have examined the signaling pathway involved in melanogenesis through which ultraviolet (UV) or α-melanocyte-stimulating hormones (α-MSH) stimuli act as key inducers to produce melanin at the stratum basal layer of the epidermis, the signaling pathway regulating melanogenesis is still controversial. This study reports that α-MSH, not UVA and UVB, acted as a major stimulus of melanogenesis in B16F10 melanoma cells. Signaling pathway analysis using gene knockdown technology and chemical inhibitors, the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 kinase 2 (RSK2) played an important role in melanogenesis. Unexpectedly, LY294002, a PI3K inhibitor, increased melanogenesis without UV or α-MSH stimulation, suggesting that the PI3K/AKT signaling pathway may not be a major signaling pathway for melanogenesis. Chemical inhibition of the MEKs/ERKs/RSK2 signaling pathway using U0126 or BI-D1870 suppressed melanogenesis by stimulation of UVA or α-MSH stimulation, or both. In particular, the genetic depletion of RSK2 or constitutive active (CA)-RSK2 overexpression showed that RSK2 plays a key role in melanogenesis. Interestingly, forkhead box protein O4 (FOXO4) was phosphorylated by RSK2, resulting in the increase of FOXO4's transactivation activity. Notably, the FOXO4 mutant harboring serine-to-alanine replacement at the phosphorylation sites totally abrogated the transactivation activity and reduced melanin production, indicating that RSK2-mediated FOXO4 activity plays a key role in melanogenesis. Furthermore, kaempferol, a flavonoid inhibiting the RSK2 activity, suppressed melanogenesis. In addition, FOXO4-wt overexpression showed that FOXO4 enhance melanin synthesis. Overall, the RSK2-FOXO4 signaling pathway plays a key role in modulating melanogenesis.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pteridinas / Alfa-MSH / Transdução de Sinais / Proteínas Quinases S6 Ribossômicas 90-kDa / Melaninas Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pteridinas / Alfa-MSH / Transdução de Sinais / Proteínas Quinases S6 Ribossômicas 90-kDa / Melaninas Idioma: En Ano de publicação: 2024 Tipo de documento: Article