Your browser doesn't support javascript.
loading
MdTPR16, an apple tetratricopeptide repeat (TPR)-like superfamily gene, positively regulates drought stress in apple.
Liu, Xin; Wang, Da-Ru; Chen, Guo-Lin; Wang, Xun; Hao, Shi-Ya; Qu, Man-Shu; Liu, Jia-Yi; Wang, Xiao-Fei; You, Chun-Xiang.
Afiliação
  • Liu X; Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018
  • Wang DR; Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018
  • Chen GL; Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018
  • Wang X; Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018
  • Hao SY; School of Arts and Sciences, Rutgers-New Brunswick, 57 US Highway 1, New Brunswick, NJ, 08901-8554, USA.
  • Qu MS; Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018
  • Liu JY; Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018
  • Wang XF; Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018
  • You CX; Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018
Plant Physiol Biochem ; 210: 108572, 2024 May.
Article em En | MEDLINE | ID: mdl-38677189
ABSTRACT
The Tetratricopeptide repeat (TPR)-like superfamily with TPR conserved domains is widely involved in the growth and abiotic stress in many plants. In this report, the gene MdTPR16 belongs to the TPR family in apple (Malus domestica). Promoter analysis reveal that MdTPR16 incorporated various stress response elements, including the drought stress response elements. And different abiotic stress treatments, drought especially, significantly induce the response of MdTPR16. Overexpression of MdTPR16 result in better drought tolerance in apple and Arabidopsis by up-regulating the expression levels of drought stress-related genes, achieving a higher chlorophyll content level, more material accumulation, and overall better growth compared to WT in the drought. Under drought stress, the overexpressed MdTPR16 also mitigate the oxidative damage in cells by reducing the electrolyte leakage, malondialdehyde content, and the H2O2 and O2- accumulation in apples and Arabidopsis. In conclusion, MdTPR16 act as a beneficial regulator of drought stress response by regulating the expression of related genes and the cumulation of reactive oxygen species (ROS).
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Regulação da Expressão Gênica de Plantas / Malus Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Regulação da Expressão Gênica de Plantas / Malus Idioma: En Ano de publicação: 2024 Tipo de documento: Article