Transient Performance Analysis of Centrifugal Left Ventricular Assist Devices Coupled With Windkessel Model: Large Eddy Simulations Study on Continuous and Pulsatile Flow Operation.
J Biomech Eng
; 146(10)2024 10 01.
Article
em En
| MEDLINE
| ID: mdl-38683061
ABSTRACT
Computational fluid dynamics (CFD) simulations are widely used to develop and analyze blood-contacting medical devices such as left ventricular assist devices (LVADs). This work presents an analysis of the transient behavior of two centrifugal LVADs with different designs HeartWare VAD and HeartMate3. A scale-resolving methodology is followed through Large Eddy Simulations, which allows for the visualization of turbulent structures. The three-dimensional (3D) LVAD models are coupled to a zero-dimensional (0D) 2-element Windkessel model, which accounts for the vascular resistance and compliance of the arterial system downstream of the device. Furthermore, both continuous- and pulsatile-flow operation modes are analyzed. For the pulsatile conditions, the artificial pulse of HeartMate3 is imposed, leading to a larger variation of performance variables in HeartWare VAD than in HeartMate3. Moreover, CFD results of pulsatile-flow simulations are compared to those obtained by accessing the quasi-steady maps of the pumps. The quasi-steady approach is a predictive tool used to provide a preliminary approximation of the pulsatile evolution of flow rate, pressure head, and power, by only imposing a speed pulse and vascular parameters. This preliminary quasi-steady solution can be useful for deciding the characteristics of the pulsatile speed law before running a transient CFD simulation, as the former entails a significant reduction in computational cost in comparison to the latter.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Fluxo Pulsátil
/
Coração Auxiliar
/
Hidrodinâmica
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article