Your browser doesn't support javascript.
loading
Construction and application of 3-fucosyllactose whole-cell biosensor for high-throughput screening of overproducers.
Li, Qinggang; Liu, Chuan; He, Jinhuai; Liu, Tiantian; Zhang, Wencong; Xie, Zhenzhen; Zong, Jianfei; Li, Yu; Sun, Xue; Lu, Fuping.
Afiliação
  • Li Q; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China; Haihe Labo
  • Liu C; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
  • He J; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
  • Liu T; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
  • Zhang W; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
  • Xie Z; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
  • Zong J; Shandong SynBio-Vision Technology Co., Ltd, Weifang 262500, PR China.
  • Li Y; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
  • Sun X; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China. Electronic
  • Lu F; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
Bioresour Technol ; 402: 130798, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38705212
ABSTRACT
Biosensor-based high-throughput screening is efficient for improving industrial microorganisms. There is a severe shortage of human milk oligosaccharides (HMOs) biosensors. This study established a 3-fucosyllactose (3-FL, a kind of HMOs) whole-cell biosensor by coupling cell growth with production. To construct and optimize the biosensor, an Escherichia coli 3-FL producer was engineered by deleting the manA, yihS and manX genes, directing the mannose flux solely to 3-FL synthesis. Then, an α-L-fucosidase was introduced to hydrolyze 3-FL to fucose which was used as the only carbon source for cell growth. Using the biosensor, the 3-FL production of a screened mutant was improved by 25 % to 42.05 ± 1.28 g/L. The productivity reached 1.17 g/L/h, the highest level reported by now. The csrB mutant obtained should be a new clue for the 3-FL overproduction mechanism. In summary, this study provided a novel approach to construct HMOs biosensors for strain improvement.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Trissacarídeos / Técnicas Biossensoriais / Escherichia coli Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Trissacarídeos / Técnicas Biossensoriais / Escherichia coli Idioma: En Ano de publicação: 2024 Tipo de documento: Article