Your browser doesn't support javascript.
loading
Gate-Tunable Positive and Negative Photoconductance in Near-Infrared Organic Heterostructures for In-Sensor Computing.
Xu, Yunqi; Xu, Xiaolu; Huang, Ying; Tian, Ye; Cheng, Miao; Deng, Junyang; Xie, Yifan; Zhang, Yanqin; Zhang, Panpan; Wang, Xinhua; Wang, Zhongrui; Li, Mengmeng; Li, Ling; Liu, Ming.
Afiliação
  • Xu Y; Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
  • Xu X; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Huang Y; Global Health Drug Discovery Institute, Beijing, 100192, China.
  • Tian Y; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
  • Cheng M; Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
  • Deng J; Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
  • Xie Y; Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
  • Zhang Y; Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
  • Zhang P; Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
  • Wang X; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Wang Z; State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
  • Li M; Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
  • Li L; Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, China.
  • Liu M; Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
Adv Mater ; 36(30): e2402903, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38710094
ABSTRACT
The rapid growth of sensor data in the artificial intelligence often causes significant reductions in processing speed and power efficiency. Addressing this challenge, in-sensor computing is introduced as an advanced sensor architecture that simultaneously senses, memorizes, and processes images at the sensor level. However, this is rarely reported for organic semiconductors that possess inherent flexibility and tunable bandgap. Herein, an organic heterostructure that exhibits a robust photoresponse to near-infrared (NIR) light is introduced, making it ideal for in-sensor computing applications. This heterostructure, consisting of partially overlapping p-type and n-type organic thin films, is compatible with conventional photolithography techniques, allowing for high integration density of up to 520 devices cm-2 with a 5 µm channel length. Importantly, by modulating gate voltage, both positive and negative photoresponses to NIR light (1050 nm) are attained, which establishes a linear correlation between responsivity and gate voltage and consequently enables real-time matrix multiplication within the sensor. As a result, this organic heterostructure facilitates efficient and precise NIR in-sensor computing, including image processing and nondestructive reading and classification, achieving a recognition accuracy of 97.06%. This work serves as a foundation for the development of reconfigurable and multifunctional NIR neuromorphic vision systems.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article