Gonadal Transcriptome Analysis Reveals that SOX17 and CYP26A1 are Involved in Sex Differentiation in the Chinese Soft-Shelled Turtle (Pelodiscus sinensis).
Biochem Genet
; 2024 May 06.
Article
em En
| MEDLINE
| ID: mdl-38710962
ABSTRACT
The Chinese soft-shelled turtle (Pelodiscus sinensis) is an important aquaculture animal in China and exhibits growth dimorphism. Single-male cultures are often selected for higher economic efficiency. However, the mechanism of sex differentiation in P. sinensis is not well-known. In this study, a comparative transcriptome analysis of male (ZZ)- and 17ß-oestradiol (E2)-induced pseudo-female (ZZ + E2)-stage embryonic gonads of P. sinensis was performed. A total of 420 differentially expressed genes (DEGs), which included 271 upregulated genes and 149 downregulated genes, were identified. These DEGs were mainly involved in several sex-related pathways, such as "ovarian steroidogenesis", "steroid hormone biosynthesis", "PPAR signalling pathway", and "metabolism of xenobiotics by cytochrome P450". In addition, 50 known and novel candidate genes involved in sex differentiation, such as the male-biased genes AMH, DMRT1, TBX1, and CYP26A1 and the female-biased genes CYP1A1, RASD1, and SOX17, were investigated and identified. For further verification, the full-length cDNAs of SOX17 and CYP26A1 were obtained. SOX17 contains a 1218-bp ORF and encodes 405 amino acids containing an HMG functional domain unique to the Sox superfamily. CYP26A1 contains a 1485-bp ORF and encodes 494 amino acids. Different expression levels of SOX17 and CYP26A1 could be detected in all the tested tissues of males and females. Notably, the expression of CYP26A1 was markedly greater in the gonads of male embryos (P < 0.05) than in those of female embryos, whereas the expression of SOX17 showed the opposite trend (P < 0.05). Taken together, the RNA-seq and qRTâPCR results suggested potential roles for SOX17 and CYP26A1 in promoting female and male gonadal development, respectively, in P. sinensis. Our results provide new evidence for the mechanism of sex differentiation in P. sinensis.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article