Your browser doesn't support javascript.
loading
Nanoscale visualization of extracellular DNA on cell surfaces.
Olsen, Anita; Ehrhardt, Christopher J; Yadavalli, Vamsi K.
Afiliação
  • Olsen A; Department of Chemical and Life Science Engineering Virginia Commonwealth University Richmond Virginia USA.
  • Ehrhardt CJ; Department of Forensic Science Virginia Commonwealth University Richmond Virginia USA.
  • Yadavalli VK; Department of Chemical and Life Science Engineering Virginia Commonwealth University Richmond Virginia USA.
Anal Sci Adv ; 1(3): 194-202, 2020 Oct.
Article em En | MEDLINE | ID: mdl-38716132
ABSTRACT
Nanoscale analysis of extracellular DNA (eDNA) that is present on the surface of cells in trace biological samples can provide insight into the understanding of DNA transfer through touch, and thereby, the role of eDNA is a biologically and forensically relevant phenomenon. While various bulk scale tools and DNA analysis can be used to quantitatively obtain this information, obtaining a three dimensional (3D) visualization of the eDNA can provide a unique look into the spatial and temporal dynamics at the cellular level. In this study, we show how atomic force microscopy (AFM) can be integrated with optical microscopy to visualize the distribution of surface associate eDNA at a single cell level. Using a nucleic acid fluorophore such as DiamondDye, the surface eDNA can be observed and quantified using fluorescence microscopy. This informational channel can then be overlaid with surface topography and cellular elasticity to provide structural visualization. Finally, chemical force spectroscopy can be used to obtain the distribution of surface-associated eDNA on the cell surface at the molecular level. Such integrated techniques can enhance understanding of the biological role of eDNA, and can also be potentially valuable for investigating challenging trace samples, containing very few cells for various analyses.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article