Your browser doesn't support javascript.
loading
Removal of 6-methylquinoline from shale gas wastewater using electrochemical carbon nanotubes filter.
Ye, Jinzhong; Wang, Ying; Cheng, Xin; Chen, Guijing; Zhang, Di; Chen, Xin; Chen, Liang; Tang, Peng; Xie, Wancen; Liu, Baicang.
Afiliação
  • Ye J; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute for Disaster Management and Reconstruction, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610207, China; Yibin Institute of Industrial Tech
  • Wang Y; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute for Disaster Management and Reconstruction, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610207, China; Yibin Institute of Industrial Tech
  • Cheng X; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute for Disaster Management and Reconstruction, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610207, China; Yibin Institute of Industrial Tech
  • Chen G; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute for Disaster Management and Reconstruction, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610207, China; Yibin Institute of Industrial Tech
  • Zhang D; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute for Disaster Management and Reconstruction, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610207, China; Yibin Institute of Industrial Tech
  • Chen X; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute for Disaster Management and Reconstruction, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610207, China; Yibin Institute of Industrial Tech
  • Chen L; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute for Disaster Management and Reconstruction, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610207, China; Yibin Institute of Industrial Tech
  • Tang P; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute for Disaster Management and Reconstruction, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610207, China; Yibin Institute of Industrial Tech
  • Xie W; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute for Disaster Management and Reconstruction, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610207, China; Department of Municipal Engineerin
  • Liu B; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute for Disaster Management and Reconstruction, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610207, China; Yibin Institute of Industrial Tech
Chemosphere ; 359: 142259, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38723692
ABSTRACT
6-Methylquinoline (6-MQ) is identified as a high-concentration organic compound pervasive in shale gas wastewater (SGW) and poses a significant risk of environmental pollution. In response, this study aimed to address these challenges by introducing an innovative electrochemical membrane constructed with multi-walled carbon nanotubes (CNTs) for the removal of 6-MQ. The investigation systematically explored the impact of voltage, initial pollutant concentration, and salinity on the performance of the electrochemical CNTs filter. It was found a positive correlation between removal efficiency and increasing voltage and salinity levels. Conversely, as the initial concentration of pollutants increased, the efficiency showed a diminishing trend. The electrochemical CNTs filter exhibited remarkable efficacy in both adsorption removal and electrochemical oxidation of 6-MQ. Notably, the CNTs membrane exhibited robust adsorption capabilities, evidenced by the sustained adsorption of 6-MQ for over 33 h. Furthermore, applying an electrochemical oxidation voltage of 3 V consistently maintained a removal rate exceeding 34.0% due to both direct and indirect oxidation, underscoring the sustained efficacy of the electrochemical membranes. Besides, real wastewater experiments, while displaying a reduction in removal efficiency compared to synthetic wastewater experiments, emphasized the substantial potential of the electrochemical CNTs filter for practical applications. This study underscores the significant promise of electrochemical membranes in addressing low molecular weight contaminants in SGW, contributing valuable insights for advancing SGW treatment strategies.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quinolinas / Poluentes Químicos da Água / Nanotubos de Carbono / Águas Residuárias Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quinolinas / Poluentes Químicos da Água / Nanotubos de Carbono / Águas Residuárias Idioma: En Ano de publicação: 2024 Tipo de documento: Article