Your browser doesn't support javascript.
loading
Bulk transparent supramolecular glass enabled by host-guest molecular recognition.
Cai, Changyong; Wu, Shuanggen; Zhang, Yunfei; Li, Fenfang; Tan, Zhijian; Dong, Shengyi.
Afiliação
  • Cai C; College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China.
  • Wu S; College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China.
  • Zhang Y; College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China.
  • Li F; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
  • Tan Z; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, P. R. China. tanzhijian@caas.cn.
  • Dong S; College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China. dongsy@hnu.edu.cn.
Nat Commun ; 15(1): 3929, 2024 May 09.
Article em En | MEDLINE | ID: mdl-38724556
ABSTRACT
Supramolecular glass is a non-covalently cross-linked amorphous material that exhibits excellent optical properties and unique intrinsic structural features. Compared with artificial inorganic/organic glass, which has been extensively developed, supramolecular glass is still in the infancy stage, and itself is rarely recognized and studied thus far. Herein, we present the development of the host-guest molecular recognition motifs between methyl-ß-cyclodextrin and para-hydroxybenzoic acid as the building blocks of supramolecular glass. Non-covalent polymerization resulting from the host-guest complexation and hydrogen bonding formation enables high transparency and bulk state to supramolecular glass. Various advantages, including recyclability, compatibility, and thermal processability, are associated with dynamic assembly pattern. Short-range order (host-guest complexation) and long-range disorder (three dimensional polymeric network) structures are identified simultaneously, thus demonstrating the typical structural characteristics of glass. This work provides a supramolecular strategy for constructing transparent materials from organic components.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article