Your browser doesn't support javascript.
loading
Depolymerization of Polyester Fibers with Dimethyl Carbonate-Aided Methanolysis.
Tanaka, Shinji; Koga, Maito; Kuragano, Takashi; Ogawa, Atsuko; Ogiwara, Hibiki; Sato, Kazuhiko; Nakajima, Yumiko.
Afiliação
  • Tanaka S; Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
  • Koga M; Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
  • Kuragano T; Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
  • Ogawa A; Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
  • Ogiwara H; Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
  • Sato K; Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
  • Nakajima Y; Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
ACS Mater Au ; 4(3): 335-345, 2024 May 08.
Article em En | MEDLINE | ID: mdl-38737120
ABSTRACT
Polyester fibers, comprising mostly poly(ethylene terephthalate) with high crystalline content, represent the most commonly produced plastic for ubiquitous textiles, and approximately 60 million tons are manufactured annually worldwide. Considering the social issues of mismanaged waste produced from used textile products, there is an urgent demand for sustainable waste polyester fiber recycling methods. We developed a low-temperature, rapid, and efficient depolymerization method for recycling polyester fibers. By utilizing methanolysis with dimethyl carbonate as a trapping agent for ethylene glycol, depolymerization of polyester fibers from textile products proceeded at 50 °C for 2 h, affording dimethyl terephthalate (DMT) in a >90% yield. This strategy allowed us to depolymerize even practical polyester textiles blended with other fibers to selectively isolate DMT in high yields. This method was also applicable for colored polyester textiles, and analytically pure DMT was isolated via depolymerization and decolorization processes.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article