Your browser doesn't support javascript.
loading
Structural Defect-Enabled Magnetic Neutrality Nanoprobes for Ultra-High-Field Magnetic Resonance Imaging of Isolated Tumor Cells in Vivo.
Du, Hui; Wang, Qiyue; Zhang, Bo; Liang, Zeyu; Huang, Canyu; Shi, Dao; Li, Fangyuan; Ling, Daishun.
Afiliação
  • Du H; Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Wang Q; Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Zhang B; World Laureates Association (WLA) Laboratories, Shanghai, 201203, China.
  • Liang Z; Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Huang C; World Laureates Association (WLA) Laboratories, Shanghai, 201203, China.
  • Shi D; Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Li F; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
  • Ling D; Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
Adv Mater ; 36(29): e2401538, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38738793
ABSTRACT
The identification of metastasis "seeds," isolated tumor cells (ITCs), is of paramount importance for the prognosis and tailored treatment of metastatic diseases. The conventional approach to clinical ITCs diagnosis through invasive biopsies is encumbered by the inherent risks of overdiagnosis and overtreatment. This underscores the pressing need for noninvasive ITCs detection methods that provide histopathological-level insights. Recent advancements in ultra-high-field (UHF) magnetic resonance imaging (MRI) have ignited hope for the revelation of minute lesions, including the elusive ITCs. Nevertheless, currently available MRI contrast agents are susceptible to magnetization-induced strong T2-decaying effects under UHF conditions, which compromises T1 MRI capability and further impedes the precise imaging of small lesions. Herein, this study reports a structural defect-enabled magnetic neutrality nanoprobe (MNN) distinguished by its paramagnetic properties featuring an exceptionally low magnetic susceptibility through atomic modulation, rendering it almost nonmagnetic. This unique characteristic effectively mitigates T2-decaying effect while concurrently enhancing UHF T1 contrast. Under 9 T MRI, the MNN demonstrates an unprecedentedly low r2/r1 value (≈1.06), enabling noninvasive visualization of ITCs with an exceptional detection threshold of ≈0.16 mm. These high-performance MNNs unveil the domain of hitherto undetectable minute lesions, representing a significant advancement in UHF-MRI for diagnostic purposes and fostering comprehensive metastasis research.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Meios de Contraste Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Meios de Contraste Idioma: En Ano de publicação: 2024 Tipo de documento: Article