Your browser doesn't support javascript.
loading
Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry.
Li, Bowen; Raji, Idris O; Gordon, Akiva G R; Sun, Lizhuang; Raimondo, Theresa M; Oladimeji, Favour A; Jiang, Allen Y; Varley, Andrew; Langer, Robert S; Anderson, Daniel G.
Afiliação
  • Li B; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. bw.li@utoronto.ca.
  • Raji IO; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. bw.li@utoronto.ca.
  • Gordon AGR; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada. bw.li@utoronto.ca.
  • Sun L; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada. bw.li@utoronto.ca.
  • Raimondo TM; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada. bw.li@utoronto.ca.
  • Oladimeji FA; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada. bw.li@utoronto.ca.
  • Jiang AY; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Varley A; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Langer RS; Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA.
  • Anderson DG; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Mater ; 23(7): 1002-1008, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38740955
ABSTRACT
To unlock the full promise of messenger (mRNA) therapies, expanding the toolkit of lipid nanoparticles is paramount. However, a pivotal component of lipid nanoparticle development that remains a bottleneck is identifying new ionizable lipids. Here we describe an accelerated approach to discovering effective ionizable lipids for mRNA delivery that combines machine learning with advanced combinatorial chemistry tools. Starting from a simple four-component reaction platform, we create a chemically diverse library of 584 ionizable lipids. We screen the mRNA transfection potencies of lipid nanoparticles containing those lipids and use the data as a foundational dataset for training various machine learning models. We choose the best-performing model to probe an expansive virtual library of 40,000 lipids, synthesizing and experimentally evaluating the top 16 lipids flagged. We identify lipid 119-23, which outperforms established benchmark lipids in transfecting muscle and immune cells in several tissues. This approach facilitates the creation and evaluation of versatile ionizable lipid libraries, advancing the formulation of lipid nanoparticles for precise mRNA delivery.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: RNA Mensageiro / Técnicas de Química Combinatória / Aprendizado de Máquina / Lipídeos Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: RNA Mensageiro / Técnicas de Química Combinatória / Aprendizado de Máquina / Lipídeos Idioma: En Ano de publicação: 2024 Tipo de documento: Article