Your browser doesn't support javascript.
loading
Hierarchical Chiral Calcium Silicate Hydrate Films Promote Vascularization for Tendon-to-Bone Healing.
Cai, Zhuochang; Qu, Cheng; Song, Wei; Wang, Haoyuan; Chen, Shuai; Zhou, Chao; Fan, Cunyi.
Afiliação
  • Cai Z; Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.
  • Qu C; Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 200233, P. R. China.
  • Song W; Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.
  • Wang H; Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 200233, P. R. China.
  • Chen S; Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.
  • Zhou C; Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.
  • Fan C; Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.
Adv Mater ; 36(31): e2404842, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38767289
ABSTRACT
Revascularization after rotator cuff repair is crucial for tendon-to-bone healing. The chirality of materials has been reported to influence their performance in tissue repair. However, data on the use of chiral structures to optimize biomaterials as a revascularization strategy remain scarce. Here, calcium silicate hydrate (CSO) films with hierarchical chirality on the atomic to micrometer scale are developed. Interestingly, levorotatory CSO (L-CSO) films promote the migration and angiogenesis of endothelial cells, whereas dextral and racemic CSO films do not induce the same effects. Molecular analysis demonstrates that L-chirality can be recognized by integrin receptors and leads to the formation of focal adhesion, which activates mechanosensitive ion channel transient receptor potential vanilloid 4 to conduct Ca2+ influx. Consequently, the phosphorylation of serum response factor is biased by Ca2+ influx to promote the vascular endothelial growth factor receptor 2 signaling pathway, resulting in enhanced angiogenesis. After implanted in a rat rotator cuff tear model, L-CSO films strongly enhance vascularization at the enthesis, promoting collagen maturation, increasing bone and fibrocartilage formation, and eventually improving the biomechanical strength. This study reveals the mechanism through which chirality influences angiogenesis in endothelial cells and provides a critical theoretical foundation for the clinical application of chiral biomaterials.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Materiais Biocompatíveis / Doenças Ósseas / Silicatos / Compostos de Cálcio / Neovascularização Fisiológica Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Materiais Biocompatíveis / Doenças Ósseas / Silicatos / Compostos de Cálcio / Neovascularização Fisiológica Idioma: En Ano de publicação: 2024 Tipo de documento: Article