Your browser doesn't support javascript.
loading
Enhancing Lithium-Ion Diffusion Kinetics in a 3D Lithium Metal Host through Surface Modification with Hierarchical Multimetal Oxides.
Jung, Dayun; Cho, Youngseul; Kim, Dohyeong; Piao, Shuqing; Hahn, Misun; Kim, Chae Won; Piao, Yuanzhe.
Afiliação
  • Jung D; Program in Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea.
  • Cho Y; Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea.
  • Kim D; Program in Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea.
  • Piao S; Program in Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea.
  • Hahn M; Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea.
  • Kim CW; SK Chemicals Co., Ltd., Pangyo-ro 310, Bundang-gu, Seongnam-si, Gyeonggi-do 13494, Republic of Korea.
  • Piao Y; Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea.
ACS Appl Mater Interfaces ; 16(22): 28319-28332, 2024 Jun 05.
Article em En | MEDLINE | ID: mdl-38767854
ABSTRACT
Lithium metal is a promising anode candidate to achieve high-energy-density lithium metal batteries (LMBs) due to its ultrahigh theoretical capacity (3860 mA h g-1) and low electrochemical potential (-3.04 V vs S.H.E). Unfortunately, the commercialization of lithium metal anodes is hindered by the growth of Li dendrites and the infinite Li volume changes during the cycling process. Herein, we introduce a 3D hierarchical multimetal oxide nanowire framework as a current collector for Li metal anodes. The hierarchical metal oxide layers of CoO and CuxO provide abundant Li nucleation sites and thus offer uniform Li plating and regulate Li nucleation during the charge/discharge process. As a result, half cells present a prolonging Coulombic efficiency of 97% at 1 mA cm-2 with a capacity of 1 mA h cm-2 for over 300 cycles. A stable cyclability of symmetric cells is demonstrated under 1 mA cm-2 with a capacity of 1 mA h cm-2 for 1500 h. Full cells paired with an LFP cathode show a stable capacity of 131.5 mA h g-1 with a capacity retention of 92% for 200 cycles. These results will shed insights into the design of 3D Cu current collectors for high-performance composite Li metal anodes.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article