Your browser doesn't support javascript.
loading
Modulate stress distribution with bio-inspired irregular architected materials towards optimal tissue support.
Jia, Yingqi; Liu, Ke; Zhang, Xiaojia Shelly.
Afiliação
  • Jia Y; Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
  • Liu K; Department of Advanced Manufacturing and Robotics, Peking University, Beijing, 100871, China. liuke@pku.edu.cn.
  • Zhang XS; Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA. zhangxs@illinois.edu.
Nat Commun ; 15(1): 4072, 2024 May 21.
Article em En | MEDLINE | ID: mdl-38773087
ABSTRACT
Natural materials typically exhibit irregular and non-periodic architectures, endowing them with compelling functionalities such as body protection, camouflage, and mechanical stress modulation. Among these functionalities, mechanical stress modulation is crucial for homeostasis regulation and tissue remodeling. Here, we uncover the relationship between stress modulation functionality and the irregularity of bio-inspired architected materials by a generative computational framework. This framework optimizes the spatial distribution of a limited set of basic building blocks and uses these blocks to assemble irregular materials with heterogeneous, disordered microstructures. Despite being irregular and non-periodic, the assembled materials display spatially varying properties that precisely modulate stress distribution towards target values in various control regions and load cases, echoing the robust stress modulation capability of natural materials. The performance of the generated irregular architected materials is experimentally validated with 3D printed physical samples - a good agreement with target stress distribution is observed. Owing to its capability to redirect loads while keeping a proper amount of stress to stimulate bone repair, we demonstrate the potential application of the stress-programmable architected materials as support in orthopedic femur restoration.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estresse Mecânico Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estresse Mecânico Idioma: En Ano de publicação: 2024 Tipo de documento: Article