Your browser doesn't support javascript.
loading
Physical interactions between specifically regulated subpopulations of the MCM and RNR complexes prevent genetic instability.
Yáñez-Vilches, Aurora; Romero, Antonia M; Barrientos-Moreno, Marta; Cruz, Esther; González-Prieto, Román; Sharma, Sushma; Vertegaal, Alfred C O; Prado, Félix.
Afiliação
  • Yáñez-Vilches A; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain.
  • Romero AM; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain.
  • Barrientos-Moreno M; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain.
  • Cruz E; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain.
  • González-Prieto R; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain.
  • Sharma S; Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
  • Vertegaal ACO; Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.
  • Prado F; Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
PLoS Genet ; 20(5): e1011148, 2024 May.
Article em En | MEDLINE | ID: mdl-38776358
ABSTRACT
The helicase MCM and the ribonucleotide reductase RNR are the complexes that provide the substrates (ssDNA templates and dNTPs, respectively) for DNA replication. Here, we demonstrate that MCM interacts physically with RNR and some of its regulators, including the kinase Dun1. These physical interactions encompass small subpopulations of MCM and RNR, are independent of the major subcellular locations of these two complexes, augment in response to DNA damage and, in the case of the Rnr2 and Rnr4 subunits of RNR, depend on Dun1. Partial disruption of the MCM/RNR interactions impairs the release of Rad52 -but not RPA-from the DNA repair centers despite the lesions are repaired, a phenotype that is associated with hypermutagenesis but not with alterations in the levels of dNTPs. These results suggest that a specifically regulated pool of MCM and RNR complexes plays non-canonical roles in genetic stability preventing persistent Rad52 centers and hypermutagenesis.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ribonucleotídeo Redutases / Saccharomyces cerevisiae / Dano ao DNA / Proteínas de Ciclo Celular / Proteínas de Saccharomyces cerevisiae / Instabilidade Genômica / Reparo do DNA / Replicação do DNA / Proteína Rad52 de Recombinação e Reparo de DNA Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ribonucleotídeo Redutases / Saccharomyces cerevisiae / Dano ao DNA / Proteínas de Ciclo Celular / Proteínas de Saccharomyces cerevisiae / Instabilidade Genômica / Reparo do DNA / Replicação do DNA / Proteína Rad52 de Recombinação e Reparo de DNA Idioma: En Ano de publicação: 2024 Tipo de documento: Article