Your browser doesn't support javascript.
loading
Response of microbial diversity and function to the degradation of Barkol Saline Lake.
Liu, Yong-Hong; Gao, Lei; Jiang, Hong-Chen; Fang, Bao-Zhu; Huang, Yin; Li, Li; Li, Shuai; Abdugheni, Rashidin; Lian, Wen-Hui; Zhang, Jing-Yi; Yang, Zhen-Dong; Mohamad, Osama Abdalla Abdelshafy; Li, Wen-Jun.
Afiliação
  • Liu YH; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
  • Gao L; Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
  • Jiang HC; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
  • Fang BZ; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
  • Huang Y; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
  • Li L; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
  • Li S; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
  • Abdugheni R; State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
  • Lian WH; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
  • Zhang JY; State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
  • Yang ZD; State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
  • Mohamad OAA; School of Architecture and Civil Engineering, Chengdu University, Chengdu, China.
  • Li WJ; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
Front Microbiol ; 15: 1358222, 2024.
Article em En | MEDLINE | ID: mdl-38784797
ABSTRACT
Barkol Lake, a shrinking hypersaline lake situated in the northeast of Xinjiang, China, has experienced the exposure of its riverbed and the gradual drying up of its original sediment due to climate change and human activities, resulting in the formation of alkaline soils. These changes have correspondingly altered the physicochemical characteristics of the surrounding environment. Microorganisms play a crucial role, with special functioning involved in various nutrient cycling and energy transfer in saline lake environments. However, little is known about how the microbial community dynamics and metabolic functions in this shrinking saline lake relate to the degradation process. To address this knowledge gap, a cultivation-independent method of amplicon sequencing was used to identify and analyze the microbial community and its potential ecological functions in the sediment and degraded area. The microbial community diversity was found to be significantly lower in the degraded areas than in the sediment samples. The Pseudomonadota was dominant in Barkol Saline Lake. The abundance of Desulfobacterota and Bacillota in the degraded areas was lower than in the lake sediment, while Pseudomonadota, Acidobacteriota, and Actinobacteriota showed an opposite trend. The ßNTI showed that microbial community assembly was primarily associated with deterministic processes in Barkol Saline Lake ecosystems and stochastic processes at the boundary between sediment and degraded areas. Functional predictions showed that sulfur metabolism, particularly sulfate respiration, was much higher in sediment samples than in the degraded areas. Overall, these findings provided a possible perspective for us to understand how microorganisms adapt to extreme environments and their role in saline lakes under environmental change.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article