Your browser doesn't support javascript.
loading
Influence of Quadrupolar Molecular Transitions within Plasmonic Cavities.
Huang, Junyang; Ojambati, Oluwafemi S; Climent, Clàudia; Cuartero-Gonzalez, Alvaro; Elliott, Eoin; Feist, Johannes; Fernández-Domínguez, Antonio I; Baumberg, Jeremy J.
Afiliação
  • Huang J; NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
  • Ojambati OS; NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
  • Climent C; Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid E-28049, Spain.
  • Cuartero-Gonzalez A; Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
  • Elliott E; Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid E-28049, Spain.
  • Feist J; Mechanical Engineering Department, ICAI, Universidad Pontificia Comillas, Madrid 28015, Spain.
  • Fernández-Domínguez AI; NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
  • Baumberg JJ; Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid E-28049, Spain.
ACS Nano ; 18(22): 14487-14495, 2024 Jun 04.
Article em En | MEDLINE | ID: mdl-38787356
ABSTRACT
Optical nanocavities have revolutionized the manipulation of radiative properties of molecular and semiconductor emitters. Here, we investigate the amplified photoluminescence arising from exciting a dark transition of ß-carotene molecules embedded within plasmonic nanocavities. Integrating a molecular monolayer into nanoparticle-on-mirror nanostructures unveils enhancements surpassing 4 orders of magnitude in the initially light-forbidden excitation. Such pronounced enhancements transcend conventional dipolar mechanisms, underscoring the presence of alternative enhancement pathways. Notably, Fourier-plane scattering spectroscopy shows that the photoluminescence excitation resonance aligns with a higher-order plasmonic cavity mode, which supports strong field gradients. Combining quantum chemistry calculations with electromagnetic simulations reveals an important interplay between the Franck-Condon quadrupole and Herzberg-Teller dipole contributions in governing the absorption characteristics of this dark transition. In contrast to free space, the quadrupole moment plays a significant role in photoluminescence enhancement within nanoparticle-on-mirror cavities. These findings provide an approach to access optically inactive transitions, promising advancements in spectroscopy and sensing applications.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article