Your browser doesn't support javascript.
loading
A Comprehensive Pyrolysis Mechanism of Binuclear Chromium-Based Complexes for Superior OER Activity.
Gan, Meixing; Li, Li; Yang, Xixian; Rong, Hongwei; Wang, Zheng; Li, Yuebin; Zhang, Yuexing; Chen, Xueli; Peng, Xu.
Afiliação
  • Gan M; Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China.
  • Li L; Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China.
  • Yang X; Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China.
  • Rong H; Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China.
  • Wang Z; Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China.
  • Li Y; Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China.
  • Zhang Y; Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 2530
  • Chen X; Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
  • Peng X; Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China.
ACS Appl Mater Interfaces ; 16(22): 28664-28672, 2024 Jun 05.
Article em En | MEDLINE | ID: mdl-38787643
ABSTRACT
Transition metal oxides are widely pursued as potent electrocatalysts for the oxygen evolution reaction (OER). However, single-metal chromium catalysts remain underexplored due to their intrinsic activity limitations. Herein, we successfully synthesize mixed-valence, nitrogen-doped Cr2O3/CrO3/CrN@NC nanoelectrocatalysts via one-step targeted pyrolysis techniques from a binuclear Cr-based complex (Cr2(Salophen)2(CH3OH)2), which is strategically designed as a precursor. Comprehensive pyrolysis mechanisms were thoroughly delineated by using coupled thermogravimetric analysis and mass spectrometry (TG-MS) alongside X-ray diffraction. Below 800 °C, the generation of a reducing atmosphere was noted, while continuous pyrolysis at temperatures exceeding 800 °C promoted highly oxidized CrO3 species with an elevated +6 oxidation state. The optimized catalyst pyrolyzed at 1000 °C (Cr2O3/CrO3/CrN@NCs-1000) demonstrated remarkable OER activity with a low overpotential of 290 mV in 1 M KOH and excellent stability. Further density functional theory (DFT) calculations revealed a much smaller reaction energy barrier of CrO3 than the low oxidation state species for OER reactivity. This work reveals fresh strategies for rationally engineering chromium-based electrocatalysts and overcoming intrinsic roadblocks to enable efficient OER catalysis through a deliberate oxidation state and compositional tuning.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article