Your browser doesn't support javascript.
loading
Sleep staging algorithm based on smartwatch sensors for healthy and sleep apnea populations.
Silva, Fernanda B; Uribe, Luisa F S; Cepeda, Felipe X; Alquati, Vitor F S; Guimarães, João P S; Silva, Yuri G A; Santos, Orlem L Dos; de Oliveira, Alberto A; de Aguiar, Gabriel H M; Andersen, Monica L; Tufik, Sergio; Lee, Wonkyu; Li, Lin Tzy; Penatti, Otávio A.
Afiliação
  • Silva FB; Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil. Electronic address: fernanda.b@samsung.com.
  • Uribe LFS; Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil. Electronic address: luisa.s@samsung.com.
  • Cepeda FX; Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil.
  • Alquati VFS; Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil.
  • Guimarães JPS; Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil.
  • Silva YGA; Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil.
  • Santos OLD; Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil.
  • de Oliveira AA; Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil.
  • de Aguiar GHM; Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil.
  • Andersen ML; Sleep Institute, São Paulo, SP, 04020-060, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, 04724-000, Brazil.
  • Tufik S; Sleep Institute, São Paulo, SP, 04020-060, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, 04724-000, Brazil.
  • Lee W; Samsung Electronics, Suwon, 16677, Republic of Korea.
  • Li LT; Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil.
  • Penatti OA; Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil.
Sleep Med ; 119: 535-548, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38810479
ABSTRACT

OBJECTIVE:

Sleep stages can provide valuable insights into an individual's sleep quality. By leveraging movement and heart rate data collected by modern smartwatches, it is possible to enable the sleep staging feature and enhance users' understanding about their sleep and health conditions.

METHOD:

In this paper, we present and validate a recurrent neural network based model with 23 input features extracted from accelerometer and photoplethysmography sensors data for both healthy and sleep apnea populations. We designed a lightweight and fast solution to enable the prediction of sleep stages for each 30-s epoch. This solution was developed using a large dataset of 1522 night recordings collected from a highly heterogeneous population and different versions of Samsung smartwatch.

RESULTS:

In the classification of four sleep stages (wake, light, deep, and rapid eye movements sleep), the proposed solution achieved 71.6 % of balanced accuracy and a Cohen's kappa of 0.56 in a test set with 586 recordings.

CONCLUSION:

The results presented in this paper validate our proposal as a competitive wearable solution for sleep staging. Additionally, the use of a large and diverse data set contributes to the robustness of our solution, and corroborates the validation of algorithm's performance. Some additional analysis performed for healthy and sleep apnea population demonstrated that algorithm's performance has low correlation with demographic variables.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Síndromes da Apneia do Sono / Fases do Sono / Algoritmos Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Síndromes da Apneia do Sono / Fases do Sono / Algoritmos Idioma: En Ano de publicação: 2024 Tipo de documento: Article