Your browser doesn't support javascript.
loading
Integrative Analysis of Histone Acetylation Regulated CYP4F12 in Esophageal Cancer Development.
Chen, Yanhong; Wang, Li; Wang, Yuchen; Fang, Yanyan; Shen, Wenyang; Si, Yingxue; Zheng, Xiaoli; Zeng, Su.
Afiliação
  • Chen Y; Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Dr
  • Wang L; Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Dr
  • Wang Y; Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Dr
  • Fang Y; Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Dr
  • Shen W; Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Dr
  • Si Y; Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Dr
  • Zheng X; Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Dr
  • Zeng S; Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Dr
Drug Metab Dispos ; 52(8): 813-823, 2024 Jul 16.
Article em En | MEDLINE | ID: mdl-38811154
ABSTRACT
Current therapeutic strategies for esophageal cancer (EC) patients have yielded limited improvements in survival rates. Recent research has highlighted the influence of drug metabolism enzymes on both drug response and EC development. Our study aims to identify specific drug metabolism enzymes regulated by histone acetylation and to elucidate its molecular and clinical features. CYP4F12 exhibited a notable upregulation subsequent to trichostatin A treatment as evidenced by RNA sequencing analysis conducted on the KYSE-150 cell line. The change in gene expression was associated with increased acetylation level of histone 3 K18 and K27 in the promoter. The regulation was dependent on p300. In silicon analysis of both The Cancer Genome Atlas esophageal carcinoma and GSE53624 dataset suggested a critical role of CYP4F12 in EC development, because CYP4F12 was downregulated in tumor tissues and predicted better disease-free survival. Gene ontology analysis has uncovered a robust correlation between CYP4F12 and processes related to cell migration, as well as its involvement in cytosine-mediated immune activities. Further investigation into the relationship between immune cells and CYP4F12 expression has indicated an increased level of B cell infiltration in samples with high CYP4F12 expression. CYP4F12 was also negatively correlated with the expression of inhibitory checkpoints. An accurate predictive nomogram model was established combining with clinical factors and CYP4F12 expression. In conclusion, CYP4F12 was crucial in EC development, and targeting CYP4F12 may improve the therapeutic efficacy of current treatment in EC patients. SIGNIFICANCE STATEMENT CYP4F12 expression was downregulated in esophageal cancer (EC) patients and could be induced by trichostatin A. During EC development, CYP4F12 was linked to reduced cell migration and increased infiltration of B cells. CYP4F12 also is a biomarker as prognostic predictors and therapeutic guide in EC patients.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Esofágicas / Histonas Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Esofágicas / Histonas Idioma: En Ano de publicação: 2024 Tipo de documento: Article