Your browser doesn't support javascript.
loading
Monitoring of toxic cyanobacterial blooms in Lalla Takerkoust reservoir by satellite imagery and microcystin transfer to surrounding farms.
Mugani, Richard; El Khalloufi, Fatima; Kasada, Minoru; Redouane, El Mahdi; Haida, Mohammed; Aba, Roseline Prisca; Essadki, Yasser; Zerrifi, Soukaina El Amrani; Herter, Sven-Oliver; Hejjaj, Abdessamad; Aziz, Faissal; Ouazzani, Naaila; Azevedo, Joana; Campos, Alexandre; Putschew, Anke; Grossart, Hans-Peter; Mandi, Laila; Vasconcelos, Vitor; Oudra, Brahim.
Afiliação
  • Mugani R; Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco; Dep
  • El Khalloufi F; Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P.: 145, 25000, Khouribga, Morocco.
  • Kasada M; Graduate School of Life Sciences, Tohoku University 6-3, Aoba, Sendai, 980-8578 Japan.
  • Redouane EM; Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; UMR-I 02 INERIS-URCA-ULH SEBIO, University of Reims Champagne-Ardenne, Reims 51100, France.
  • Haida M; Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco.
  • Aba RP; Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco.
  • Essadki Y; Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco.
  • Zerrifi SEA; Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; Higher Institute of Nurses Professions and Health Techniques of Guelmim, Guelmim, 81000, Morocco.
  • Herter SO; Department of Water Quality Engineering, Institute of Environmental Technology, Technical University Berlin, Berlin, Germany.
  • Hejjaj A; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco.
  • Aziz F; Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco.
  • Ouazzani N; Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco.
  • Azevedo J; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal.
  • Campos A; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal.
  • Putschew A; Department of Water Quality Engineering, Institute of Environmental Technology, Technical University Berlin, Berlin, Germany.
  • Grossart HP; Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775, Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Maulbeeralle 2, 14469, Potsdam, Germany.
  • Mandi L; Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco.
  • Vasconcelos V; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal. Electronic a
  • Oudra B; Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco.
Harmful Algae ; 135: 102631, 2024 May.
Article em En | MEDLINE | ID: mdl-38830709
ABSTRACT
Cyanobacterial harmful algal blooms (CyanoHABs) threaten public health and freshwater ecosystems worldwide. In this study, our main goal was to explore the dynamics of cyanobacterial blooms and how microcystins (MCs) move from the Lalla Takerkoust reservoir to the nearby farms. We used Landsat imagery, molecular analysis, collecting and analyzing physicochemical data, and assessing toxins using HPLC. Our investigation identified two cyanobacterial species responsible for the blooms Microcystis sp. and Synechococcus sp. Our Microcystis strain produced three MC variants (MC-RR, MC-YR, and MC-LR), with MC-RR exhibiting the highest concentrations in dissolved and intracellular toxins. In contrast, our Synechococcus strain did not produce any detectable toxins. To validate our Normalized Difference Vegetation Index (NDVI) results, we utilized limnological data, including algal cell counts, and quantified MCs in freeze-dried Microcystis bloom samples collected from the reservoir. Our study revealed patterns and trends in cyanobacterial proliferation in the reservoir over 30 years and presented a historical map of the area of cyanobacterial infestation using the NDVI method. The study found that MC-LR accumulates near the water surface due to the buoyancy of Microcystis. The maximum concentration of MC-LR in the reservoir water was 160 µg L-1. In contrast, 4 km downstream of the reservoir, the concentration decreased by a factor of 5.39 to 29.63 µgL-1, indicating a decrease in MC-LR concentration with increasing distance from the bloom source. Similarly, the MC-YR concentration decreased by a factor of 2.98 for the same distance. Interestingly, the MC distribution varied with depth, with MC-LR dominating at the water surface and MC-YR at the reservoir outlet at a water depth of 10 m. Our findings highlight the impact of nutrient concentrations, environmental factors, and transfer processes on bloom dynamics and MC distribution. We emphasize the need for effective management strategies to minimize toxin transfer and ensure public health and safety.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Monitoramento Ambiental / Microcystis / Microcistinas / Proliferação Nociva de Algas / Imagens de Satélites Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Monitoramento Ambiental / Microcystis / Microcistinas / Proliferação Nociva de Algas / Imagens de Satélites Idioma: En Ano de publicação: 2024 Tipo de documento: Article