Your browser doesn't support javascript.
loading
Identification and characterization of FBA genes in moso bamboo reveals PeFBA8 related to photosynthetic carbon metabolism.
Li, Tiankuo; Lin, Zeming; Zhu, Chenglei; Yang, Kebin; Sun, Huayu; Li, Hui; Wang, Jiangfei; Gao, Zhimin.
Afiliação
  • Li T; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing 100102, China; Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China.
  • Lin Z; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing 100102, China; Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China.
  • Zhu C; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing 100102, China; Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China.
  • Yang K; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing 100102, China; Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China.
  • Sun H; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing 100102, China; Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China.
  • Li H; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing 100102, China; Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China.
  • Wang J; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing 100102, China; Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China.
  • Gao Z; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing 100102, China; Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China. Electronic
Int J Biol Macromol ; 275(Pt 1): 132885, 2024 Jun 03.
Article em En | MEDLINE | ID: mdl-38838894
ABSTRACT
Fructose 1,6-bisphosphate aldolase (FBA) is a pivotal enzyme, which plays a critical role in fixing CO2 through the process of in the Calvin cycle. In this study, a comprehensive exploration of the FBA family genes in moso bamboo (Phyllostachys edulis) was conducted by the bioinformatics and biological analyses. A total of nine FBA genes (PeFBA1-PeFBA9) were identified in the moso bamboo genome. The expression patterns of PeFBAs across diverse tissues of moso bamboo suggested that they have multifaceted functionality. Notably, PeFBA8 might play an important role in regulating photosynthetic carbon metabolism. Co-expression and cis-element analyses demonstrated that PeFBA8 was regulated by a photosynthetic regulatory transcription factor (PeGLK1), which was confirmed by yeast one-hybrid and dual-luciferase assays. In-planta gene editing analysis revealed that the edited PeFBA8 mutants displayed compromised photosynthetic functionality, characterized by reduced electron transport rate and impaired photosystem I, leading to decreased photosynthesis rate overall, compared to the unedited control. The recombinant protein of PeFBA8 from prokaryotic expression exhibited enzymatic catalytic function. The findings suggest that the expression of PeFBA8 can affect photosynthetic efficiency of moso bamboo leaves, which underlines the potential of leveraging PeFBA8's regulatory mechanism to breed bamboo varieties with enhanced carbon fixation capability.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article