Your browser doesn't support javascript.
loading
Improving the reliability of deep learning computational ghost imaging with prediction uncertainty based on neighborhood feature maps.
Appl Opt ; 63(14): 3736-3744, 2024 May 10.
Article em En | MEDLINE | ID: mdl-38856335
ABSTRACT
Defect inspection is required in various fields, and many researchers have attempted deep-learning algorithms for inspections. Deep-learning algorithms have advantages in terms of accuracy and measurement time; however, the reliability of deep-learning outputs is problematic in precision measurements. This study demonstrates that iterative estimation using neighboring feature maps can evaluate the uncertainty of the outputs and shows that unconfident error predictions have higher uncertainties. In ghost imaging using deep learning, the experimental results show that removing outputs with higher uncertainties improves the accuracy by approximately 15.7%.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article