Unsupervised speckle denoising in digital holographic interferometry based on 4-f optical simulation integrated cycle-consistent generative adversarial network.
Appl Opt
; 63(13): 3557-3569, 2024 May 01.
Article
em En
| MEDLINE
| ID: mdl-38856541
ABSTRACT
The speckle noise generated during digital holographic interferometry (DHI) is unavoidable and difficult to eliminate, thus reducing its accuracy. We propose a self-supervised deep-learning speckle denoising method using a cycle-consistent generative adversarial network to mitigate the effect of speckle noise. The proposed method integrates a 4-f optical speckle noise simulation module with a parameter generator. In addition, it uses an unpaired dataset for training to overcome the difficulty in obtaining noise-free images and paired data from experiments. The proposed method was tested on both simulated and experimental data, with results showing a 6.9% performance improvement compared with a conventional method and a 2.6% performance improvement compared with unsupervised deep learning in terms of the peak signal-to-noise ratio. Thus, the proposed method exhibits superior denoising performance and potential for DHI, being particularly suitable for processing large datasets.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article