Your browser doesn't support javascript.
loading
Oil produced from Ghana Shea Nut crop for prospective industrial applications.
Alale, Enoch Mbawin; Tulashie, Samuel Kofi; Miyittah, Michael; Baidoo, Emmanuel Boafo; Adukpoh, Kingsley Enoch; Dadzie, Enock Opare; Osei, Clement Akonnor; Gah, Bright Komla; Acquah, Desmond; Quasi, Philip Agudah.
Afiliação
  • Alale EM; Industrial Chemistry Section, Department of Chemistry, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Takoradi - Cape Coast Rd, Cape Coast, Central Region P.M.B. University Post Office, Ghana.
  • Tulashie SK; Industrial Chemistry Section, Department of Chemistry, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Takoradi - Cape Coast Rd, Cape Coast, Central Region P.M.B. University Post Office, Ghana.
  • Miyittah M; Department of Chemical and Renewable Energy Engineering, School of Sustainable Engineering, College of Agriculture and Natural Sciences, University of Cape Coast, Takoradi - Cape Coast Rd, Cape Coast, Central Region P.M.B. University Post Office, Ghana.
  • Baidoo EB; Department of Environmental Science, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.
  • Adukpoh KE; Industrial Chemistry Section, Department of Chemistry, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Takoradi - Cape Coast Rd, Cape Coast, Central Region P.M.B. University Post Office, Ghana.
  • Dadzie EO; Department of Chemistry, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, Ghana.
  • Osei CA; Industrial Chemistry Section, Department of Chemistry, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Takoradi - Cape Coast Rd, Cape Coast, Central Region P.M.B. University Post Office, Ghana.
  • Gah BK; Industrial Chemistry Section, Department of Chemistry, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Takoradi - Cape Coast Rd, Cape Coast, Central Region P.M.B. University Post Office, Ghana.
  • Acquah D; Industrial Chemistry Section, Department of Chemistry, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Takoradi - Cape Coast Rd, Cape Coast, Central Region P.M.B. University Post Office, Ghana.
  • Quasi PA; Industrial Chemistry Section, Department of Chemistry, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Takoradi - Cape Coast Rd, Cape Coast, Central Region P.M.B. University Post Office, Ghana.
Heliyon ; 10(11): e31171, 2024 Jun 15.
Article em En | MEDLINE | ID: mdl-38868070
ABSTRACT
Though little research has been done, shea nut oil (Shea Butter), is a promising shea product with great potential for use in industrial shea product manufacture. To assess the oil obtained from the shea nuts for personal, commercial, and industrial use, this study focuses on the extraction process, the optimal solvent for extraction, thermodynamics and kinetic studies, and characterization of the oil. Using different solvents as well as extraction temperatures and times, the oil was extracted using the solvent extraction method. Moreover, models of thermodynamics and kinetics were used in examining the Shea nut oil extraction at different durations and temperatures. At the highest temperature of 333 K (at 130min), the highest oil yields of 70.2 % and 59.9 % for n-hexane and petroleum ether, respectively, were obtained, following first order kinetics. For both petroleum ether and n-hexane, the regression coefficient (R2) was 1. For the extraction with n-hexane and petroleum ether, the mass transfer coefficient (Km), activation energy (Ea), entropy change (ΔS), enthalpy change (ΔH), and Gibb's free energy (ΔG) were, respectively, (0.0098 ± 0.0061 and 0.0123 ± 0.0084) min-1, 74.59 kJ mol-1 and 88.65 kJ mol-1, (-236.15 ± 0.16 and -235.63 ± 0.17) J/mol K, (71.88 ± 0.06 and 85.94 ± 0.06) kJ/mol, and (148.75 ± 1.52 and 162.46 ± 1.52) kJ/mol. These values favor an irreversible, forward, endothermic, and spontaneous process. Gas chromatography analysis was used to identify the principal fatty acids in the oil, which include stearic acid (52 %), oleic acid (30 %), and linoleic acid (3 %), as well as various minor fatty acids. The oil's potential bonds and functional groups were identified using Fourier Transform Infrared analysis, and the physicochemical parameters such as the iodine value, peroxide value, acid and free fatty acid values were found to be within acceptable ranges for use in domestic, commercial, and industrial settings.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article