Your browser doesn't support javascript.
loading
Roles of BOCu sites and graphite nitrogen on persulfate non-radical activation for tetracycline degradation.
Zhao, Yue; Qiao, Lu; Zhang, Mingjuan; Xiao, Yao; Tao, Yani; Yang, Furong; Lin, Qian; Zhang, Yi.
Afiliação
  • Zhao Y; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China.
  • Qiao L; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China.
  • Zhang M; School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China.
  • Xiao Y; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China.
  • Tao Y; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China.
  • Yang F; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China.
  • Lin Q; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China.
  • Zhang Y; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China. Electronic address: zyi@hnu.edu.cn.
J Colloid Interface Sci ; 673: 178-189, 2024 Nov.
Article em En | MEDLINE | ID: mdl-38871625
ABSTRACT
The activation of peroxymonosulfate (PMS) by carbon-based catalysts is deemed to be a promising method for the degradation of refractory organic contaminants in wastewater. Herein, a Cu-doping strategy in B and N co-doped carbon nanotubes with highly dispersed BOCu sites and graphite nitrogen were successfully synthesized for activating PMS to degradate tetracycline. The best removal rate of tetracycline within 60 min (97.63 %) was obtained by the 1.5 % Cu-BNC and the degradation rate was increased by 17.9 times. The enhanced catalyst activity was attributed to the promoting the cycle of the Cu(I)/Cu(II) redox pair by the formed BOCu sites, and the accelerating the electron transfer process by the adsorption of graphitic N for PMS. The non-free radical pathway including 1O2 and electron transfer played a dominant role in the 1.5 % Cu-BNC/PMS system. The degradation intermediates of TC were identified and three possible degradation pathways were proposed. Further toxicity analysis of the intermediates showed that the 1.5 % Cu-BNC/PMS system had a significant effect on weakening and reducing the biological toxicity and mutagenicity of TC. Moreover, it presented an excellent degradation performance in raw natural water. In general, the proposed regulation of carbon-based catalysts via the coordination-driven effect provides ideas for efficient wastewater treatment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tetraciclina / Cobre / Grafite / Nitrogênio Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tetraciclina / Cobre / Grafite / Nitrogênio Idioma: En Ano de publicação: 2024 Tipo de documento: Article