Your browser doesn't support javascript.
loading
Fe doping enhanced Cr(VI) adsorption efficiency of cerium-based adsorbents: Adsorption behaviors and inner removal mechanisms.
Hou, Bing; Yang, Xinyu; Wang, Ling; Shi, Tao; Akram, Muhammad; Wang, Lei; Wan, Jun; Gao, Baoyu; Pan, Jingwen.
Afiliação
  • Hou B; Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, College of Environment and Safety Engineering, Qingdao 266042, PR China.
  • Yang X; Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, College of Environment and Safety Engineering, Qingdao 266042, PR China.
  • Wang L; Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, College of Environment and Safety Engineering, Qingdao 266042, PR China.
  • Shi T; Shandong Luqiao Group Co. Ltd., Jinan 250021, PR China.
  • Akram M; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 2010094, PR China.
  • Wang L; Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, College of Environment and Safety Engineering, Qingdao 266042, PR China.
  • Wan J; Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, College of Environment and Safety Engineering, Qingdao 266042, PR China. Electronic address: wanjundz@s
  • Gao B; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
  • Pan J; Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, College of Environment and Safety Engineering, Qingdao 266042, PR China. Electronic address: jwpan@qust
J Colloid Interface Sci ; 673: 216-227, 2024 Nov.
Article em En | MEDLINE | ID: mdl-38875788
ABSTRACT
Cerium-based adsorbents possessed unique advantages of valence variability and abundant oxygen vacancies in hexavalent chromium (Cr(VI)) adsorption, but high cost and unstable properties restricted their application in Cr(VI) contained wastewater treatment. Herein, a series of bimetallic adsorbents with different cerium/iron ratios (CeFe@C) were prepared by adding inexpensive Fe into Ce-based adsorbents (Ce@C), and the effect of Fe doping on adsorption properties of Ce@C for Cr(VI) was investigated thoroughly. Compared with pristine Ce@C, CeFe@C exhibited excellent removal performance for Cr(VI), and the improved maximum adsorption capacity reached 75.11 mg/g at 25℃. Benefiting from Fe doping, CeFe@C had good regeneration property, with only 25 % decrease after five adsorption-desorption cycles. Contents of trivalent cerium (Ce(III)) and oxygen vacancies (Ov) in bimetallic adsorbents were positively correlated with divalent iron (Fe(II)) doping, indicating that the formation of Ce(III) and surface defects on Ce@C could be effectively regulated by Fe doping. Density functional theory (DFT) calculation results further proved that the doped Fe enhanced the electron transfer effectively and lowered the energy barriers of Cr(VI) adsorption onto Ce@C surface, strengthening the reduction and complexation to Cr(VI). This study provides new insights for improving the Cr(VI) removal performance by modified Ce-based adsorbents, and further promotes the utilization potentiality of low-cost and low-toxicity Ce-based adsorbents in Cr(VI)-containing wastewater treatment.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article