Your browser doesn't support javascript.
loading
On the rearrangement and dissociation mechanism of SiH4+ in its triply-degenerate ground state.
Mondal, T; Varandas, A J C.
Afiliação
  • Mondal T; Department of Chemistry, Koneru Lakshmaiah Education Foundation, Hyderabad 500 075, India.
  • Varandas AJC; Department of Physics, Qufu Normal University, Qufu, China.
J Chem Phys ; 160(23)2024 Jun 21.
Article em En | MEDLINE | ID: mdl-38884400
ABSTRACT
An ab initio molecular orbital study has been performed to explore the structural rearrangement and dissociation of SiH4+ radical cation at the X̃2T2 ground electronic state. All stationary points located on the lowest adiabatic sheet of Jahn-Teller (JT) split X̃2T2 state are fully optimized and characterized by performing harmonic vibrational frequency calculations. The structural rearrangement is predicted to start with JT distortions involving the doubly-degenerate (e) and triply-degenerate (t2) modes. The e mode reduces the initial Td symmetry of the SiH4+ ground state to a D2d saddle point, which eventually dissociates into the SiH3+(2A1) + H products via C3v local minimum. In turn, an e-type bending of αH-Si-H yields the SiH2+(2A1) + H2 products through the first C3v local minimum and then the Cs(2A') global minimum. In the alternative pathway, the t2 mode distorts the initial Td symmetry into a loosely bound C3v local minimum, which further dissociates into the SiH3+(2A1) + H asymptote via totally symmetric Si-H stretching mode, and SiH2+(2A1) + H2 products via H-Si-H bending (e) mode through the Cs(2A') global minimum. It is further predicted that the Cs global minimum interconverts equivalent structures via a C2v transition structure. In addition, the two dissociation products are found to be connected by a second C2v transition structure.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article