Your browser doesn't support javascript.
loading
Enhancing carrier transfer properties of Na-rich anti-perovskites, Na4OM2 with tetrahedral anion groups: an evaluation through first-principles computational analysis.
Xu, Shenglin; Zhao, Qinfu; Zhang, Ronglan; Suo, Bingbing; Song, Qi.
Afiliação
  • Xu S; Shaanxi Key Laboratory for Theoretical Physic Frontiers, Institute of Modern Physics, Northwest University, Xi'an, 710069, P. R. China. songq@nwu.edu.cn.
  • Zhao Q; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education (Northwest University), Northwest University, Xi'an, Shaanxi, 710069, P. R. China.
  • Zhang R; Shaanxi Key Laboratory for Theoretical Physic Frontiers, Institute of Modern Physics, Northwest University, Xi'an, 710069, P. R. China. songq@nwu.edu.cn.
  • Suo B; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education (Northwest University), Northwest University, Xi'an, Shaanxi, 710069, P. R. China.
  • Song Q; Shaanxi Key Laboratory for Theoretical Physic Frontiers, Institute of Modern Physics, Northwest University, Xi'an, 710069, P. R. China. songq@nwu.edu.cn.
Phys Chem Chem Phys ; 26(25): 17934-17943, 2024 Jun 26.
Article em En | MEDLINE | ID: mdl-38888322
ABSTRACT
The practical application of Na-based solid-state electrolytes (SSEs) is limited by their low level of conduction. To evaluate the impact of tetrahedral anion groups on carrier migration, we designed a set of anti-perovskite SSEs theoretically based on the previously reported Na4OBr2, including Na4O(BH4)2, Na4O(BF4)2, and Na4O(AlH4)2. It is essential to note that the excessive radius of anionic groups inevitably leads to lattice distortion, resulting in asymmetric migration paths and a limited improvement in carrier migration rate. Na4O(AlH4)2 provides a clear example of where Na+ migrates in two distinct environments. In addition, due to different spatial charge distributions, the interaction strength between anionic groups and Na+ is different. Strong interactions can cause carriers to appear on a swing, leading to a decrease in conductivity. The low conductivity of Na4O(BF4)2 is a typical example. This study demonstrates that Na4O(BH4)2 exhibits remarkable mechanical and dynamic stability and shows ionic conductivity of 1.09 × 10-4 S cm-1, two orders of magnitude higher than that of Na4OBr2. This is attributed to the expansion of the carrier migration channels by the anion groups, the moderate interaction between carriers and anionic groups, and the "paddle-wheel" effect generated by the anion groups, indicating that the "paddle-wheel" effect is still effective in low-dimensional anti-perovskite structures, in which atoms are arranged asymmetrically.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article