Your browser doesn't support javascript.
loading
Carbon monoxide-releasing Vehicle CO@TPyP-FeMOFs modulating macrophages phenotype in inflammatory wound healing.
Mu, Yixian; Yang, Xinlei; Xie, Yinhong; Luo, Jie; Wu, Sui; Yang, JinMing; Zhao, Wei; Chen, Junying; Weng, Yajun.
Afiliação
  • Mu Y; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
  • Yang X; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
  • Xie Y; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
  • Luo J; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
  • Wu S; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
  • Yang J; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
  • Zhao W; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
  • Chen J; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
  • Weng Y; Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China. Electronic address: wengyj7032@swjtu.edu.cn.
Nitric Oxide ; 149: 49-59, 2024 Aug 01.
Article em En | MEDLINE | ID: mdl-38889652
ABSTRACT
Healing of chronic wounds has been critically limited by prolonged inflammation. Carbon monoxide (CO) is a biologically active molecule with high potential based on its efficacy in modulating inflammation, promoting wound healing and tissue remodeling. Strategies to use CO as a gaseous drug to chronic wounds have emerged, but controlling the sustained release of CO at the wound site remains a major challenge. In this work, a porphyrin-Fe based metal organic frameworks, TPyP-FeMOFs was prepared. The synthesized TPyP-FeMOFs was high-temperature vacuum activated (AcTPyP-FeMOFs) and AcTPyP-FeMOFs had a relatively high Fe (II) content. CO sorption isotherms showed that AcTPyP-FeMOFs chemisorbed CO and thus CO release was sustained and prolonged. In vitro evaluation results showed that CO@TPyP-FeMOFs reduced the inflammatory level of lipopolysaccharide (LPS) activated macrophages, polarized macrophages to M2 anti-inflammatory phenotype, and promoted the proliferation of fibroblasts by altering the pathological microenvironment. In vivo study confirmed CO@TPyP-FeMOFs promoted healing in a LPS model of delayed cutaneous wound repair and reduced macrophages and neutrophils recruitment. Both in vitro and in vivo studies verified that CO@TPyP-FeMOFs acted on macrophages by modulating phenotype and inflammatory factor expression. Thus, CO release targeting macrophages and pathological microenvironment modulation presented a promising strategy for wound healing.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cicatrização / Monóxido de Carbono / Inflamação / Macrófagos Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cicatrização / Monóxido de Carbono / Inflamação / Macrófagos Idioma: En Ano de publicação: 2024 Tipo de documento: Article